Р
1
(НС, t(х
i
, x
i+1
));
r
30
s
= add [L
4
(D, (x
i+1
, x
i
)) ∧ L
1
(x
i+1
) ∧ L
2
(x
i
)]; elim [(X, {x
i
})].
5. Правило для построения словосочетания ГГ (глагол + инфинитив глагола). Правило ищет
два контактно стоящих слова х
i
и х
i+1,
при этом х
i
- глагол, а х
i+1
– инфинитив глагола, например, не
могут учиться. Для этого представим правило в виде следующей ситуации: пара лексем х
i
и х
i+1
образует пару ГГ тогда и только тогда, когда имеет место закономерность, описываемая
конъюнкцией следующих фактов:
1) х
i
имеет характеристику v
i1
∈V
i
со значением «глагол», или «глагол-отрицание», или
«глагол прошедшего времени», или «глагол прошедшего времени-отрицание» - (
∃х
i
:X) Р(x
i
, t(v
i1
,
глагол)), или (
∃х
i
:X) Р(x
i
, t(v
i1
, глагол-отрицание)), или (∃х
i
:X) Р(x
i
, t(v
i1
, глагол прошедшего
времени)), или (
∃х
i
:X) Р(x
i
, t(v
i1
, глагол прошедшего времени-отрицание));
2) х
i+1
имеет характеристику v
(i+1)1
со значением «инфинитив» или «инфинитив-отрицание» -
(
∃х
i+1
:X) Р(x
i+1
, t(v
(i+1)1
, инфинитив)) или (∃х
i+1
:X) Р(x
i+1
, t(v
(i+1)1
, инфинитив-отрицание)).
Продукция представляется в виде: pr
31
s
=<q
31
s
, r
31
s
>, где
q
31
s
= (∃х
i
:X) (Р(x
i
, t(v
i1
, глагол)) ∨ Р(x
i
, t(v
i1
, глагол-отрицание)) ∨ Р(x
i
, t(v
i1
, глагол прошедшего
времени))
∨ Р(x
i
, t(v
i1
, глагол прошедшего времени-отрицание))) ∧ (∃х
i+1
:X) (Р(x
i+1
, t(v
(i+1)1
,
инфинитив))
∨ Р(x
i+1
, t(v
(i+1)1
, инфинитив-отрицание)))↔ (∃х
i
:X) (∃x
i+1
:X) Р
1
(ГГ, t(х
i
, x
i+1
));
r
31
s
= add [L
4
(D, (x
i+1
, x
i
)) ∧ L
1
(x
i+1
) ∧ L
2
(x
i
)].
6. Правило построения словосочетания СрП (сравнительного прилагательного). Правило ищет
два контактно стоящих слова х
i
и х
i+1
, где х
i
– это слова «более» или «менее», а х
i+1
– полное или
краткое прилагательное, например, более способный. Представим правило в виде ситуации: пара
лексем х
i
и х
i+1
образует пару СрП тогда и только тогда, когда имеет место закономерность,
описываемая конъюнкцией следующих фактов:
1) х
i
имеет значение «более» или «менее» - P
E
(х
i
, более) или P
E
(х
i
, менее);
2) х
i+1
имеет характеристику v
(i+1)1
∈V
(i+1)
со значением «прилагательное» или со значением
«краткое прилагательное» - (
∃x
i+1
:X) Р(x
i+1
, t(v
(i+1)1
, прилагательное)) или (∃x
i+1
:X) Р(x
i+1
, t(v
(i+1)1
,
краткое прилагательное)).
Таким образом, продукцию можно представить в виде: pr
32
s
=<q
32
s
, r
32
s
>, где
q
32
s
= (P
E
(х
i
, более) ∨ P
E
(х
i
, менее)) ∧ (∃х
i+1
:X) (Р(x
i+1
, t(v
(i+1)1
, прилагательное)) ∨ Р(x
i+1
,
t(v
(i+1)1
, краткое прилагательное)))↔ (∃х
i
:X) (∃x
i+1
:X) Р
1
(СрП, t(х
i
, x
i+1
));
r
32
s
= add [L
4
(D, (x
i+1
, x
i
)) ∧ L
1
(x
i+1
) ∧ L
2
(x
i
)]; elim [(X, {x
i
})].
7. Правило для построения словосочетания СЧ (существительное + числительное). Правило
ищет два контактно стоящих слова х
i
и х
i+1
, где х
i
– существительное, а х
i+1
– числительное, или,
наоборот, х
i
– числительное, а х
i+1
– существительное, например, специальности 220400, 639
группы. В результате формируется словосочетание (х
i
, х
i+1
), где х
i
- существительное и главное
слово, х
i+1
– числительное и зависимое слово или наоборот. Тогда представим правило в виде двух
ситуаций.
Ситуация первая: пара лексем х
i
и х
i+1
образует пару СЧ тогда и только тогда, когда имеет
место закономерность, описываемая конъюнкцией следующих фактов:
1) х
i
имеет характеристику v
i1
∈V
i
со значением «существительное» - (∃х
i
:X) Р(x
i
, t(v
i1
,
106