270 7 Method of Separation of Variables
21. Solve the radioactive decay problem:
u
t
− ku
xx
= Ae
−ax
, 0 <x<π, t>0,
u (x , 0) = sin x, 0 ≤ x ≤ π,
u (0,t)=0,u(π, t)=0,t≥ 0.
22. Determine the solution of th e initial boundary-value problem:
u
t
− ku
xx
= h (x, t) , 0 <x<l, t>0,k= constant,
u (x , 0) = f (x) , 0 ≤ x ≤ l,
u (0,t)=p (t) ,u(l, t)=q (t) ,t≥ 0.
23. Determine the solution of th e initial boundary-value problem:
u
t
− ku
xx
= h (x, t) , 0 <x<l, t>0,
u (x , 0) = f (x) , 0 ≤ x ≤ l,
u (0,t)=p (t) ,u
x
(l, t)=q (t) ,t≥ 0.
24. Solve the problem:
u
t
− ku
xx
=0, 0 <x<1,t>0,
u (x , 0) = x (1 − x) , 0 ≤ x ≤ 1,
u (0,t)=t, u (1,t)=sint, t ≥ 0.
25. Solve the problem:
u
t
− 4u
xx
= xt, 0 <x<1,t≥ 0,
u (x , 0) = sin πx, 0 ≤ x ≤ 1,
u (0,t)=t, u (1,t)=t
2
,t≥ 0.
26. Solve the problem:
u
t
− ku
xx
= x cos t, 0 <x<π, t>0,
u (x , 0) = sin x, 0 ≤ x ≤ π,
u (0,t)=t
2
,u(π,t)=2t, t ≥ 0.
27. Solve the problem:
u
t
− u
xx
=2x
2
t, 0 <x<1,t>0,
u (x , 0) = cos (3πx/2) , 0 ≤ x ≤ 1,
u (0,t)=1,u
x
(1,t)=
3π
2
,t≥ 0.
28. Solve the problem:
u
t
− 2 u
xx
= h, 0 <x<1,t>0,h= constant,
u (x , 0) = x , 0 ≤ x ≤ 1,
u (0,t)=sint, u
x
(1,t)+u (1,t)=2,t≥ 0.