Protein–DNA Photocrosslinking 361
32. Severinov, K., Mustaev, A., Severinova, E., Bass, I., Kashlev, M., Landick, R., et
al. (1995) Assembly of functional Escherichia coli RNA polymerase containing
β subunit fragments. Proc. Natl. Acad. Sci. USA 92, 4591–4595.
33. Severinov, K., Mustaev, A., Kukarin, A., Muzzin, O., Bass, I., Darst, S., et al.
(1996) Structural modules of the large subunits of RNA polymerase. Introducing
archaebacterial and chloroplast split sites in the β and β' subunits of Escherichia
coli RNA polymerase. J. Biol. Chem. 271, 27,969–27,974.
34. Tang, H., Severinov, K., Goldfarb, A., and Elbright, E. (1995) Rapid RNA poly-
merase genetics: one-day, no-column preparation of reconstituted recombinant
Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 92, 4902–4906.
35. Martin, E., Sagitov, V., Burova, E., Nikiforov, V., and Goldfarb, A. (1992)
Genetic dissection of the transcription cycle. A mutant RNA polymerase that can-
not hold onto a promoter. J. Biol. Chem. 267, 20,175–20,180.
36. Zalenskaya, K., Lee, J., Chandrasekhar, N. G., Shin, Y. K., Slutsky, M., and
Goldfarb, A. (1990) Recombinant RNA polymerase: inducible overexpression,
purification and assembly of Escherichia coli rpo gene products. Gene 89, 7–12.
37. Ebright, R., Ebright, Y., and Gunasekera, A. (1989) Consensus DNA site for the
Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold
higher affinity for the consensus DNA site than for the E. coli lac DNA site.
Nucleic Acids Res. 17, 10,295–10,305.
38. Gilbert, W. (1976) Starting and stopping sequences for the RNA polymerase, in
RNA Polymerase (Losick, R., and Chamberlin, M., eds.), Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, pp. 193–206.
39. Zhang, X., Zhou, Y., Ebright, Y., and Ebright, R. (1992) Catabolite gene activator
protein (CAP) is not an acidic-activating-region transcription activator protein:
negatively charged amino acids of CAP that are solvent-accessible in the CAP–
DNA complex play no role in transcription activation at the lac promoter. J. Biol.
Chem. 267, 8136–8139.
40. Kunkel, T. (1985) Rapid and efficient site-specific mutagenesis without pheno-
typic selection. Proc. Natl. Acad. Sci. USA 82, 488–492.
41. Staros, J., Bayley, H., Standring, D., and Knowles, J. (1978) Reduction of aryl
azides by thiols: implications for the use of photoaffinity reagents. Biochem.
Biophys. Res. Commun. 80, 568–572.
42. Melancon, P., Burgess, R., and Record, M. (1983) Direct evidence for the prefer-
ential binding of Escherichia coli RNA polymerase holoenzyme to the ends of
deoxyribonucleic acid restriction fragments. Biochemistry 22, 5169–5176.
43. Hansen, J. N. (1976) Electrophoresis of ribonucleic acid on a polyacrylamide gel
which contains disulfide cross-linkages. Anal. Biochem. 76, 37–44.
44. Hansen, J. N. (1980) Chemical and electrophoretic properties of solubilizable dis-
ulfide gels. Anal. Biochem. 105, 192–201.
45. Hansen, J. N. (1981) Use of solubilizable acrylamide disulfide gels for isolation
of DNA fragments suitable for sequence analysis. Anal. Biochem. 116, 146–151.
46. Tang, H., Kim, Y., Severinov, K., Goldfarb, A., and Ebright, R. (1996) Escheri-
chia coli RNA polymerase holoenzyme: rapid reconstitution from recombinant α,
β, β', and σ subunits. Methods Enzymol. 273, 130–134.