Craven, M.
W.,
&
Shavlik, J. W. (1994). Using sampling and queries to extract rules from trained
neural networks.
Proceedings of the 11th International Conference on Machine Learning
(pp.
3745). San Mateo, CA: Morgan Kaufmann.
Fu, L. M. (1989). Integration of neural heuristics into knowledge-based inference.
Connection Science,
1(3), 325-339.
Fu,
L.
M. (1993). Knowledge-based connectionism for revising domain theories.
IEEE Transactions
on Systems, Man, and Cybernetics,
23(1), 173-182.
Gallant, S. I. (1988). Connectionist expert systems.
CACM,
31(2), 152-169.
Koppel, M., Feldman,
R.,
&
Segre, A. (1994). Bias-driven revision of logical domain theories.
Journal
of Artificial Intelligence,
1, 159-208.
http:llwww.cs.washington.edulresearch/jairhome.html.
Lacher, R., Hmska, S.,
&
Kuncicky, D. (1991).
Backpropagation learning in expert networks
(Dept.
of Computer Science Technical Report TR91-015). Florida State University, Tallahassee.
Mach, R.,
&
Shavlik, J. (1993). Using knowledge-based neural networks to improve algorithms:
Refining the Chou-Fasman algorithm for protein folding.
Machine Learning,
11(3), 195-215.
Mitchell, T. M.,
&
Thrun, S. B. (1993a). Explanation-based neural network learning for robot control.
In S. Hanson, J. Cowan,
&
C. Giles (Eds.),
Advances in neural infomtionprocessing systems
5
(pp. 287-294). San Mateo, CA: Morgan-Kaufmann Press.
Mitchell,
T.
M.,
&
Thrun, S. B. (1993b). Explanation-based learning: A comparison of symbolic and
neural network approaches.
Tenth International Conference on Machine Learning,
Amherst,
MA.
Mooney,
R.
(1993). Induction over the unexplained: Using overly-general domain theories to aid
concept learning.
Machine Learning,
lO(1).
O'Sullivan, J., Mitchell, T.,
&
Thrun, S. (1997). Explanation-based learning for mobile robot per-
ception. In K. Ikeuchi
&
M. Veloso (Eds.),
Symbolic Visual Learning
(pp. 295-324).
Ourston,
D.,
&
Mooney,
R.
J.
(1994). Theory refinement combining analytical and empirical methods.
Arti2cial Intelligence,
66(2).
Pazzani, M. J.,
&
Brunk, C. (1993). Finding accurate frontiers: A knowledge-intensive approach to
relational learning.
Proceedings of the I993 National Conference on Artificial Intelligence
(pp.
328-334).
AAAI
Press.
Pazzani, M. J., Brunk, C.
A.,
&
Silverstein, G. (1991). A knowledge-intensive approach to learning
relational concepts.
Proceedings of the Eighth International Workshop on Machine Learning
(pp. 432436). San Mateo, CA: Morgan Kaufmann.
Pazzani, M. J.,
&
Kibler, D. (1992). The utility of knowledge in inductive learning.
MachineLearning,
9(1), 57-94.
Pratt,
L.
Y.
(1993a).
Transferring previously learned
BACKPROPAGATION
neural networks to new
learning tasks
(Ph.D. thesis). Department of Computer Science, Rutgers University, New
Jersey. (Also Rutgers Computer Science Technical Report ML-TR-37.)
Pratt, L.
Y.
(1993b). Discriminability-based transfer among neural networks. In J.
E.
Moody et
al. (Eds.),
Advances in Nerual Infomtion Processing Systems
5.
San Mateo, CA: Morgan
Kaufmann.
Rosenbloom, P. S.,
&
Aasman, J. (1990). Knowledge level and inductive uses of chunking (ebl).
Proceedings of the Eighth National Conference on Artificial Intelligence
(pp. 821-827).
AAAI
Press.
Russell, S., Binder, J., Koller, D.,
&
Kanazawa, K. (1995). Local learning in probabilistic networks
with hidden variables.
Proceedings of the 14th International Joint Conference on Artificial
Intelligence,
Montreal. Morgan Kaufmann.
Shavlik, J.,
&
Towell, G. (1989). An approach to combining explanation-based and neural learning
algorithms.
Connection Science,
1(3), 233-255.
Simard, P. S., Victoni, B., LeCun,
Y.,
&
Denker,
J.
(1992). Tangent prop-A formalism for specifying
selected invariances in an adaptive network. In J. Moody et al. (Eds.),
Advances in Neural
Inforination Processing System
4.
San Mateo, CA: Morgan Kaufmann.
Sudharth, S. C.,
&
Holden, A. D. C. (1991). Symbolic-neural systems and the use of hints for
developing complex systems.
International Journal of Man-Machine Studies,
35(3), 291-3 11.