applications. Materials that grow network-forming oxides are better for these
purposes.
Metals that grow network-modifying oxides more easily undergo degradation
by corrosion. The existence of grain boundaries or other paths of easy ion move-
ment in the oxide allows continued film growth beyond the electron tunneling
limit. A partial solution to this problem is to alloy the metal with one that forms a
network oxide. The alloying metal tends to oxidize preferentially. It can segregate
to the surface as a vitreous oxide film that protects the alloy from further attack.
The need for thin oxides on metals is increasing. Our ability to control the
properties of the oxides will depend on our understanding at the atomic level of
the processes involved.
REFERENCES
1. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12:163 (1948–49).
2. F. P. Fehlner and N. F. Mott, Oxid. Metals 2:59 (1970).
3. D. F. Mitchell and M. J. Graham, Intern. Corrosion Conf. Ser. NACE-6, p. 18 (1981).
4. D. F. Mitchell and M. J. Graham, Surf. Sci. 114:546 (1982).
5. F. P. Fehlner, Low-Temperature Oxidation: the Role of Vitreous Oxides, Wiley, New
York, 1986, (a) p. 110, (b) pp. 148ff, (c) pp. 94ff, (d) pp. 228ff, (e) p. 199.
6. U. R. Evans, An Introduction to Metallic Corrosion, 2nd ed., Edward Arnold,
London, 1963.
7. H. H. Uhlig, Corrosion and Corrosion Control, 2nd ed., Wiley, New York, 1971.
8. R. Ghez, J. Chem. Phys. 58:1838 (1973).
9. F. P. Fehlner, J. Electrochem. Soc. 131:1645 (1984).
10. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed.,
Wiley, New York, 1976, (a) p. 240, (b) pp. 91ff.
11. J. A. Davies, B. Domeij, J. P. S. Pringle, and F. Brown, J. Electrochem. Soc.
112:675(1965).
12. T. N. Rhodin, Jr., J. Am. Chem. Soc. 72:5102 (1950); 73:3143 (1951).
13. F. W. Young, Jr., J. V. Cathcart, and A. T. Gwathmey, Acta Metall. 4:145 (1956).
14. R. Ramesham, S. DiStefano, D. Fitzgerald, A. P. Thakoor, and S. K. Khanna, J.
Electrochem. Soc. 134:2133 (1987).
15. D. J. Siconolfi and R. P. Frankenthal, J. Electrochem. Soc. 136:2475 (1989).
16. K.-H. Sun, J. Am. Ceram. Soc. 30:277 (1947).
17. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd ed.,
Butter-worths, London, 1962, pp. 266ff.
18. J. Grimblot and J. M. Eldridge, J. Electrochem. Soc. 128:729 (1981).
19. W. E. Campbell and U. B. Thomas, Trans. Electrochem. Soc. 91:263 (1947).
20. C. S. G. Phillips and R. J. P. Williams, Inorganic Chemistry, Vol. I, Oxford University
Press, New York, 1965, p. 533.
21. W. E. Dahlke and S. M. Sze, Solid-State Electron. 10:865 (1967).
22. Solid State Tech., August 1992, p. 12.
23. J. R. Bolton, Solar Energy 31:483 (1983).
24. Y. Kamigaki and Y. Itoh, J. Appl. Phys. 48:2891 (1977).
25. J. Ahn, W. Ting, T. Chu, S. N. Lin, and D. L. Kwong, J. Electrochem. Soc. 138:L39
(1991).
26. C. A. Paz de Araujo, R. W. Gallegos, and Y. P. Huang, J. Electrochem. Soc. 136:2673
(1989).
27. T. Sugano, Thin Solid Films 92:19 (1982).
186 Fehlner and Graham
Copyright © 2002 Marcel Dekker, Inc.