viii Contents
3Manifolds................................................. 73
3.1 Introduction ........................................... 73
3.2 Differential Manifolds ................................... 74
3.3 Tensors and Differential Forms ........................... 82
3.4 Pseudo-Riemannian Manifolds ........................... 88
3.5 Symplectic Manifolds ................................... 92
3.6 Lie Groups ............................................ 95
4 Bundles and Connections ................................. 107
4.1 Introduction ........................................... 107
4.2 Principal Bundles ...................................... 108
4.3 Associated Bundles ..................................... 116
4.4 Connections and Curvature .............................. 119
4.4.1 Universal Connections ............................ 125
4.5 Covariant Derivative .................................... 127
4.6 Linear Connections ..................................... 130
4.7 Generalized Connections ................................ 135
5 Characteristic Classes .................................... 137
5.1 Introduction ........................................... 137
5.2 Classifying Spaces ...................................... 138
5.3 Characteristic Classes ................................... 139
5.3.1 Secondary Characteristic Classes ................... 153
5.4 K-theory .............................................. 157
5.5 Index Theorems ........................................ 164
6 Theory of Fields, I: Classical .............................. 169
6.1 Introduction ........................................... 169
6.2 Physical Background .................................... 170
6.3 Gauge Fields ........................................... 179
6.4 The Space of Gauge Potentials ........................... 185
6.5 Gribov Ambiguity ...................................... 192
6.6 Matter Fields .......................................... 196
6.7 Gravitational Field Equations ............................ 200
6.8 Geometrization Conjecture and Gravity ................... 204
7 Theory of Fields, II: Quantum and Topological ........... 207
7.1 Introduction ........................................... 207
7.2 Non-perturbative Methods ............................... 208
7.3 Semiclassical Approximation ............................. 216
7.3.1 Zeta Function Regularization ...................... 217
7.3.2 Heat Kernel Regularization ........................ 218
7.4 Topological Classical Field Theories (TCFTs) .............. 220
7.4.1 Donaldson Invariants ............................. 222
7.4.2 Topological Gravity ............................... 223
7.4.3 Chern–Simons (CS) Theory ........................ 224