x = a arcsin
(
r
E
1
E
1
+ U
0
sin
"
±
t − t
0
a
r
2(E
1
+ U
0
)
m
+
+ arcsin
r
E
1
+ U
0
E
1
sin
x
0
a
#)
.
τ
sin
2π
τ
a
r
2(E
1
+ U
0
)
m
= 2π, τ = 2πa
r
m
2(E
1
+ U
0
)
.
τ
2
=
Z
x
2
x
1
dx
q
2
m
£
E
1
− U
0
tg
2
(
x
a
)
¤
,
x
1
x
2
m l
x = l cos ϕ, y = l sin ϕ;
˙x = − ˙ϕl sin ϕ, ˙y = ˙ϕl cos ϕ.
-
y
?
x
A
A
A
A
A
A
lϕ
t
mg
?
T =
m
2
( ˙x
2
+ ˙y
2
) =
m
2
l
2
˙ϕ
2
.
U = −mgx = −mgl cos ϕ.
Φ
0
E = T + U = U(Φ
0
) ⇒ ml
2
˙ϕ
2
/2 − mgl cos ϕ = −mgl cos Φ
0
.
dϕ
dt
= ±
r
2g
l
(cos ϕ − cos Φ
0
).