∂
∂ϕ
e
ϕ
= −e
r
(v∇)v = −Ω
2
re
r
1
ρ
∂p
∂r
= Ω
2
r,
1
ρ
∂p
∂z
= −g.
a
U
ρ φ
p
∞
S
0
r ϑ ϕ
U φ
0
S
0
∂φ
∂r
¯
¯
¯
¯
r=a
= 0, φ
0
¯
¯
¯
¯
r=∞
= −Ur cos ϑ.
φ
0
φ
0
= R(r)P (ϑ).
1
r
2
∂
∂r
µ
r
2
∂φ
0
∂r
¶
+
1
r
2
sin ϑ
∂
∂ϑ
µ
sin ϑ
∂φ
0
∂ϑ
¶
+
1
r
2
sin
2
ϑ
∂
2
φ
0
∂ϕ
2
= 0
d
dr
µ
r
2
dR
dr
¶
− λR = 0,
1
sin ϑ
d
dϑ
µ
sin ϑ
dP
dϑ
¶
+ λP = 0,
λ
λ = l(l+1) l = 0, 1, 2, . . .
P
l
(cos ϑ) P
0
= 1, P
1
=
cos ϑ λ = l(l + 1)
R
l
= A
l
r
l
+ B
l
r
−l−1
,