the transcription mechanism.
Science
288,
640-649.
Cramer,
P., Bushnell, P.,
and I(ornberg, R. D.
(2001).
Structural basis of transcription: RNA
polymerase
lI at 2.8 A resolution.
Science 292,
r86J-r876.
Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A.,
and
I(ornberg, R. D.
(200I).
Structuralbasis
of transcription: an RNA
polymerase
II elon-
gation
complex al 3.3 A resolution.
Scierce
292, t876-1882.
BacteriaI
RNA
Polvmerase
Consists
of
Muttiple
Subunits
Review
Helmann,
J.
D. and
Chamberlin,
M.
(1988).
Struc-
ture and
function
of bacterial sigma factors.
Annu. Rev. Biochem. rT. 839-872.
Resea rc h
Campbell, E. A.,
I(orzheva,
N., Mustaey A.,
Murakami,
I(.,
Nair, S., Goldfarb, A., and
Darst, S. A.
(2001).
Structural mechanism
for
rifampicin inhibition of bacterial RNA
poly-
merase.
Cell
lO4, 901-912.
I(orzheva, N., Mustaev A., I(ozlov M., Malhotra,
A.,
Nikiforov
V., Goldfarb, A., and Darst, S. A.
(2000).
A structural model of
transcription
elongation. Science
289,
619-625.
Zhang, G., Campbell
,E.
A.,Zl:'ang, E. A.,
Minakhin, L., Richter, C., Severinov
I(.,
and
Darst, S. A.
(1999).
Crystal
structure otThe.r-
mus aquaticus core
RNA
polymerase
at ) 3
A
resolution. Cell
98.
8ll-824.
RNA
Potymerase
Consists of the Core
Enzyme and Sigma Factor
Resea
rc h
Travers, A.
A.
and
Burgess, R. R.
(
1969) .
Cyclic
reuse of the
RNA
polymerase
sigma
factor.
Nature
222,
5)7-540.
The
Association
with Siqma
Factor
Changes at
Initiation
Resea rc h
Bar-Nahum, G. and Nudler, E,
(2001).
Isolation
and characterization of sigma(70)-retaining
transcription
elongation complexes lrom
E. coli. Cell
106, 44j-451.
I(rummel, B. and Chamberlin,
M.
J.
(1989).
RNA
chain initiation by E. coli RNA
polymerase.
Structural
transitions of the enzyme
in
early ternary complexes. Biochemistry
28,
7829-7842.
Mukhopadhyay,
J., I(apanidis, A. N., Mekler,
V.,
I(ortkhonjia, E., Ebright, Y. W., and Ebright,
R. H.
(2001).
Tfanslocation of sigma(70) with
RNA
polymerase
during transcription.
Fluores-
cence
resonance energy
transfer
assay
for
movement
relative to
DNA. Cell
106,45J463.
A Statted
RNA Polvmerase
Can
Restart
Resela
rch
I(ettenberger, H.,
Armache,
I(. J., and Cramer,
P.
(2003).
Architecture
of the
RNA
polymerase
II-TFIIS complex
and
implications
for mRNA
cleavage. Cell
ll4, 347-357.
Opalka,
N., Chlenov
M., Chacon,
P., Rice, W. J.,
Wriggers,
W., and
Darst, S.
A.
(2003).
Struc-
ture and
function of
the transcription
elonga-
tion factor GreB
bound
to bacterial
RNA
polymerase.
Cell
ll4, 3)5-345.
Sigma
Factor
Controls
Binding
to DNA
Resr:a
rc h
Bar-Nahum, G.
and Nudler,
E.
(2001).
Isolation
and characterization
of sigma(70)-retaining
transcription
elongation
complexes
from
E coli. Cell
106, 443-451.
Mukhopadhyay, J.,
I(apanidis,
A.
N.,
Mekler, V.,
I(ortkhonjia,
E., Ebright,
Y. W., and
Ebright,
R. H.
(2001).
Translocation
of
sigma(70)
with
RNA
polymerase during
transcription.
Fluo-
rescence
resonance
energy
transfer
assay for
movement
relative to
DNA. Cell
lO6,
45j-463.
Promoter
Recognition
DePends
0n Consensus
Sequences
Rev1ew
McClure, W.
R.
(1985).
Mechanism
and
control
of
transcription
initiation
in
prokaryotes Annu
Rev. Biochem.
54,
17l-204.
Resea
rch
Ross,
W.,
Gosink,
I(. K., Salomon,
J.,
Igarashi,
I(.,
Zou,
C.,Ishihama,
A., Severinov,
I(.. and
Gourse,
R. L.
(1991).
A third
recognition
ele-
ment
in bacterial
promoters: DNA binding
by the alpha
subunit
of
RNA
polymerase.
Science
262. l4O7
-l4l).
Promoter
Efficiencies
Can
Be Increased
or
Decreased
bY
Mutation
Review
McCIure, W.
R.
(1985). Mechanism
and control
of
transcription
initiation
in
prokaryotes. Annu
Rev.
Biochem.
54, 17
l-204.
RNA
Potymerase
Binds
to One
Face
of
DNA
Review
Siebenlist,
U., Simpson,
R.
B., and Gilbert,
W.
(
I9S0) . E.
coli RNA
polymerase interacts
homologously
with
two
different
promoters.
Cell20,269-281.
References
297