440 Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition
76. Santavicca, D. A., Steinberger, D. L., Gibbons, K. A., Citeno, J. V., and Mills, S.,
“The Effect of Incomplete Fuel-Air Mixing on the Lean Limit and Emissions
Characteristics of a Lean Prevaporized Premixed (LPP) Combustor,” AGARD
Conference Proceedings 536, AGARD, Paris-France, pp. 22/1–12, 1993.
77. Valk, M., private communication, 1994.
78. Martin, F. J., and Dederick, P. K. J., “NO
x
from Fuel Nitrogen in Two-Stage
Combustion,” Sixteenth Symposium (International) on Combustion, pp. 191–98,
The Combustion Institute, Pittsburgh, PA, 1976.
79. Nakata, T., Sato, M., Ninomiya, T., and Hasegawa, T., “A Study on Low NO
x
Combustion in LBG-Fueled 1500°C-Class Gas Turbine,” ASME Paper 94-GT-
218, 1994.
80. Talpallikar, M. V., Smith, C. E., Lai, M. C., and Holderman, J. D., “CFD Analysis of
Jet Mixing in Low NO
x
Flametube Combustors,” ASME Paper 91-GT-217, 1991.
81. Mosier, S. A., and Pierce, R. M., “Advanced Combustion Systems for Stationary
Gas Turbine Engines,” EPA Contract 68-02-2136, 1980.
82. Novick, A. S., Troth, D. L., and Yacobucci, H. G., “Design and Preliminary Results
of a Fuel Flexible Industrial Gas Turbine Combustor,” Journal of Engineering for
Power, Vol. 104, pp. 368–76, 1982.
83. Rizk, N. K., and Mongia, H. C., “Low NO
x
Rich-Lean Combustion Concept
Application,” AIAA Paper 91-1962, 1991.
84. Nakata, T., Sato, M., Ninomiya, T., Yoshine, T., and Yamada, M. “Design and
Test of a Low-NO
x
Advanced Rich-Lean Combustor for LBG Fueled 1300°C-
Class Gas Turbine,” ASME Paper 92-GT-234, 1992.
85. Feitelberg, A. S., and Lacey, M. A., “The GE Rich-Quench-Lean Gas Turbine
Combustor,” ASME Paper 97-GT-127, 1997.
86. Shaw, R. J., “Propulsion Challenges for a 21st Century Economically Viable,
Environmentally Compatible High-Speed Civil Transport,” Tenth International
Symposium on Air-Breathing Engines, ISABE 91-7008, AIAA, Washington, DC,
pp. 93–103, 1991.
87. Pfefferle, W. C., “Catalytically Supported Thermal Combustion,” U.S. Patent 3,
928, 961, 1975.
88. Kolaczkowski, S. T., “Catalytic Stationary Gas Turbine Combustors: A Review
of the Challenges Faced to Clear the Next Set of Hurdles,” Transactions of the
Institution of Chemical Engineers, Vol. 73, Part A, 1995.
89. Dalla Betta, R. A., Schlatter, J. C., Nickolas, S. G., Yee, D. K., and Shoji, T., “New
Catalytic Combustion Technology for Very Low Emissions Gas Turbines,”
ASME Paper 94-GT-260, 1994.
90. Dalla Betta, R. A., Schlatter, J. C., Nickolas, S. G., Razdan, M. K., and Smith, D. A.,
“Application of Catalytic Combustion Technology to Industrial Gas Turbines for
Ultra-Low NO
x
Emissions,” ASME Paper 95-GT-65, 1995.
91. Dalla Betta, R. A., Schlatter, J. C, Nickolas, S. G., Cutrone, M. B., Beebe, K. W.,
Furuse, Y., and Tsuchiya, T., “Development of a Catalytic Combustor for a
Heavy-Duty Utility Gas Turbine,” ASME Paper 96-GT-485, 1996.
92. Schlatter, J. C., Dalla Betta, R. A., Nickolas, S. G., Cutrone, M. B., and Beebe,
K. W., “Single-Digit Emissions in a Full Scale Catalytic Combustor,” ASME
Paper 97-GT-57, 1997.
93. Dutta, P., Cowell, L. H., Yee, D. K., and Dalla Betta, R. A., “Design and Evaluation
of a Single-Can Full Scale Catalytic Combustion System for Ultra-Low Emissions
Industrial Gas Turbines,” ASME Paper 97-GT-292, 1997.