
2iA
(+)
= A e
iχ
, (26.16)
n
y
N+ 1
= 0
sin(N + 1)ϕ = 0
sin(N + 1)ϕ = 0 N
ϕ
α
=
πα
N + 1
, α = 1, 2 , ..., N , (26.17)
α = 0 α = N + 1 y
n
= 0
α = N + s ϕ
N+ s
= 2π − ϕ
N
s
+ 2
α = N + s α = N − s + 2
N
ω
α
= 2ω
0
sin
πα
2(N + 1 )
, α = 1, 2 , . . . , N . (26.18)
N
1 2 N
α
ω
α
2ω
0
0 < ω
α
<
2ω
0
ω > 2ω
0
α
y
(α)
= const ·
sin ϕ
α
sin 2ϕ
α
sin Nϕ
α
Q
α
(t); Q
α
(t) = a
α
cos(ω
α
t + χ
α
) .
(26.19)