278 I. Sau, J.
ˇ
Zerovnik
21. Kranakis, E., Sing, H., Urrutia, J.: Compas Routing in Geometric Graphs. In: 11th Canadian
Conference of Computational Geometry, pp. 51–54 (1999)
22. Kunde, M., Niedermeier, R., Rossmanith, P.: Faster sorting and routing on grids with diago-
nals. In: 11th Symposium of Theoretical Computer Science, 775, pp. 225–236. Lecture Notes
on Computer Science (1994)
23. Kunde, M., Tensi, T.: (k −k) Routing on Multidimensional Mesh-Connected Arrays. Journal
of Parallel and Distributed Computing 11, 146–155 (1991)
24. Leighton, F., Maggs, B. M., Richa, A. W.: Fast Algorithms for Finding O(Congestion + Dila-
tion) Packet Routing Schedules. In: 28th Annual Hawaii International Conference on System
Sciences, pp. 555–563 (1995)
25. Leighton, F. T., Maggs, B. M., Rao, S. B.: Packet Routing and Job-Shop Scheduling in
O(congestion + dilation) Steps. Combinatorica 14(2), 167–186 (1994)
26. Leighton, T.: Introduction to Parallel Algorithms and Architectures: Arrays-Trees-
Hypercubes. Morgan-Kaufman, San Mateo, California (1992)
27. Leighton, T., Maggs, B., Rao, S.: Universal packet routing algorithms. In: 29th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 256–269 (1988)
28. Leighton, T., Makedon, F., Tollis, I. G.: A 2n−2 Step Algorithm for Routing in an n×n Array
with Constant-Size Queues. Algorithmica 14, 291–304 (1995)
29. Litman, A., Moran-Schein, S.: Fast, minimal, and oblivious routing algorithms on the mesh
with bounded queues. Journal of Interconnection Networks 2, 445–469 (2001)
30. Maggs, B.: A Survey of Congestion + Dilation Results for Packet Scheduling. 40th Annual
Conference on Information Sciences and Systems 22(24), 1505–1510 (2006)
31. Makedon, F., Symvonis, A.: Optimal algorithms for the many-to-one routing problem on 2-
dimensional meshes. Microprocessors and Microsystems 17, 361–367 (1993)
32. Nocetti, F. G., Stojmenovi
´
c, I., Zhang, J.: Addressing and Routing in Hexagonal Networks
with Applications for Tracking Mobile Users and Connection Rerouting in Cellular Networks.
IEEE Transactions on Parallel and Distributed Systems 13(9), 963–971 (2002)
33. Osterloh, A.: Optimal oblivious routing on d-dimensional Meshes. Theoretical Computer
Science 333, 331–346 (2005)
34. Ostrovsky, R., Rabani, Y.: Universal O(congestion + dilation + log
1+
ε
N) Local Control Packet
Switching Algorithms. In: 29th Annual ACM Symposium on the Theory of Computing, pp.
644–653. New York (1997)
35. Pietracaprina, A., Pucci, G.: Optimal Many-to-One Routing on the Mesh with Constant
Queues. Lecture Notes in Computer Science 2150, 645–649 (2001)
36. R
¨
acke, H.: Exploiting locality for data management in systems of limited bandwidth. In: 38th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 284–293 (1997)
37. R
¨
acke, H.: Minimizing congestion in general networks. In: 43rd Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 43–52 (2002)
38. Rajasekaran, S., Overholt, R.: Constant queue routing on a mesh. Journal of Parallel and
Distributed Computing 15, 160–166 (1992)
39. Robi
ˇ
c, B.,
ˇ
Zerovnik, J.: Minimum 2-terminal routing in 2-jump circulant graphs. Computers
and Artificial Intelligence 19(1), 37–46 (2000)
40. Sau, I.,
ˇ
Zerovnik, J.: An Optimal Permutation Routing Algorithm on Full-Duplex Hexagonal
Networks. Discrete Mathematics and Theoretical Computer Science 10(3), 49–62 (2008)
41. Scheideler, C.: Universal Routing Strategies for Interconnection Networks. Springer (1998)
42. Sibeyn, J.: Routing on Triangles, Tori and Honeycombs. International Journal of Foundations
of Computer Science 8(3), 269–287 (1997)
43. Sibeyn, J., Kaufman, M.: Deterministic 1-k routing on meshes (with applications to worm-
hole routing). In: LNCS (ed.) 11th Symposium on Theoretical Aspects of Computer Science,
vol. 775, pp. 237–248 (1994)
44. Sibeyn, J. F., Chlebus, B. S., Kaufmann, M.: Deterministic Permutation Routing on Meshes.
Journal of Algorithms 22(1), 111–141 (1997)
45. Srinivasan, A., Teo, C. P.: A constant-factor approximation algorithm for packet routing, and
balancing local vs. global criteria. In: STOC ’97: Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pp. 636–643. ACM, New York, NY, USA (1997).
DOI http://doi.acm.org/10.1145/258533.258658