˙x
4
(t)=−α
3
(x
4
− x
0
4
).
α
3
> 0 x
4
3/α
3
x
0
4
ψ
1
=0
ψ
2
=0
x
1
=0 x
4
= x
0
4
α
i
> 0,i=1, 2
ψ
1
=0
ψ
2
=0
x
4
= x
0
4
x
3
x
1
x
2
x
4
x
0
1
x
0
2
x
0
4
x
0
2
˜
D
(x
2
,x
4
)+D − D =0
dx
3ψ
dt
=
1
e
33
(x
0
2
,x
3ψ
)
1
∆
F
(f
1
f
5
− f
2
f
4
) − x
3ψ
r(x
0
2
)D (x
0
2
,x
3ψ
)
,
∆
F
f
i
x
1
=0 x
4
= x
0
4
x
2
= x
0
2
= f(x
0
4
,D − D ) x
3ψ
γ γ =(D −D )/
˜
D
0
x
3
0, 01 ÷ 1 γ =0, 5 0, 02 ÷ 1
γ =0, 8 0, 045 ÷ 1 γ =1, 1