d
2
U
out
dt
2
− γη
dU
out
dt
− η(U
c
− U
out
)+
dM(t)
dt
=0.
U
out
= U
c
M(t)=M
0
=const
U
out
= U
c
η>0 γ<0
u = −
CLη
E
(γ(α
1
+ α
2
) − 1)(U
c
− U
out
) −
L − RC(L(α
1
+ γη + α
2
− α
1
α
2
RC)+R)
R
2
CE
U
out
−
−
RC(r + L(α
1
+ α
2
− γη))
RCE
i
L
− ηL
1+RC(γη + α
1
α
2
γ − α
1
− α
2
)
RE
(U
c
− U
out
)dt.
ψ
1
=0
U
out
= U
c
L =1, 5 C =10 r =0, 5 E = 800
R =50 α
1
= α
2
= 1000 γ = −600 η =1 U
c
= 400
M(t)=0
M(t)=
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩
0
t<0, 15;
10
5
0, 15 t<0, 3;
−10
5
t 0, 3