Correlations - and Distances - Based Approaches to Static Analysis… 83
Llaneras, F. & Picó, J. (2008). Stoichiometric Modelling of Cell Metabolism. Journal of
Bioscience and Bioengineering,
105, 1-11.
Maharjan, R. P. & Ferenci, T. (2005). Metabolomic diversity in the species Escherichia coli
and its relationship to genetic population structure. Metabolomics,
3, 235-242.
Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on
Milligan, W. G. & Cooper, M. C. (1987). Methodology review: clustering methods. Appl.
Morgan, J. A. & Rhodes, D. (2002). Mathematical Modeling of Plant Metabolic Pathways.
Metabolic Engineering,
4, 80-89.
Morgenthal, K. Weckwerth, W. & Steuer, R. (2006). Metabolomic networks in plants:
transitions from pattern recognition to biological interpretation. Biosystems,
83, 108-117.
Morgenthal, K.,Wienkoop, S., Scholz, M., Selbig, J. & Weckwerth, W. (2005). Correlative
GC–TOF–MS based metabolite profiling and LC–MS based protein profiling reveal
time-related systemic regulation of metabolite–protein networks and improve pattern
recognition for multiple biomarker selection. Metabolomics,
1, 109-121.
Mortier, F. & Bar-Hen, A. (2004). Influence and sensitivity measures in correspondence
analysis. Statistics,
38, 207-215.
Nicholson, J. K., Lindon, J. C. & Holmes, E. (1999). ‘Metabonomics’: understanding the
metabolic responses of living systems to pathophysiological stimuli via multivariate
statistical analysis of biological NMR spectroscopic data. Xenobiotica,
29, 1181-1189.
Nyieredy, S. z., Meier, B., Erdelmeier, C. A. J. & Sticher, O. (1985). “PRISMA”: A
geometrical design for solvent optimization in HPLC. J. High Resolut. Chromatogr.,
Chromatogr. Communi.,
8, 186-188.
Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. (1998). Systematic functional analysis
of the yeast genome. Trends Biotechnol.,
16, 373-378.
Ott, K. H., Aranibar, N., Singh, B. & Stockton, G. W. (2003). Metabonomics classifies
pathways affected by bioactive compounds. Artificial neural network classification of
NMR spectra of plant extracts. Phytochemistry,
62, 971-985.
Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S. & Palson, B. O. (2004).
Comparison of network-based pathway analysis methods. Trends Biotechnol.,
22, 400-
405.
Papin, J. A., Price, N. D., Wiback, S. J, Fell, D. A. & Palsson, B. O. (2003). Metabolic
pathways in the post-genome era. Trends Biochem. Sci.,
28, 250-258.
Pattarino, F., Marengo, E., Gasco, M. R. & Carpignano, R. (1993). Experimental design and
partial least squares in the study of complex mixtures: microemulsions as drug carriers.
Int. J. Pharm. 91, pp. 157-165.
Ponce, Y. M. (2004). Total and local (atom and atom type) molecular quadratic indices:
significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR
applications. Bioorganic & Medicinal Chemistry,
12, 6351-6369. Psych Meas., 11, 329-
354.
Robinson, R. B. (2005). Identifying outliers in correlated water quality data. J Environ Eng,
134, 651-657.
Roessner, U., Luedemann, A., Brust, D., et al., (2001). Metabolic profiling allows
comprhensive phenotyping of genetically or environmentally modified plant systems.
Plant Cell,
13, 11-29.
Rousseeuw, P. J. & Leroy, A. M. (1987). Robust regression and outlier detection. Wiley, New
York.