185
⎢
⎢
⎢
⎢
⎣
⎡
=
⎟
⎠
⎞
⎜
⎝
⎛
−
π
=
⎟
⎠
⎞
⎜
⎝
⎛
π
−
02
4
cos
0
4
3sin
x
x
;
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
π
=−
π
∈π=
π
−
Zllx
Znnx
,
2
2
4
,
4
3
;
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
−=
∈
π
+
π
=
Zl
l
x
Zn
n
x
,
28
,
312
Ответ:
Zn
n
x ∈
π
+
π
= ,
312
,
Zl
l
x ∈
π
+
π
−= ,
28
.
№ 1195
1) sinx + sin5x = sin3x, 2sin3x ⋅ cos2x – sin5x = 0, sin3x(2cos2x – 1) = 0,
⎢
⎢
⎣
⎡
=
=
2
1
2cos
03sin
x
x
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
±=
∈
π
=
Zl
l
x
Zn
n
x
,
26
,
3
Ответ:
Zn
n
x ∈
π
= ,
3
, Zl
l
x ∈
π
+
π
±= ,
26
;
2) cos7x – cos3x = 3sin5x, -2sin5x⋅sin2x–3sin5x=0, sin5x(2sin2x + 3) = 0,
⎢
⎢
⎣
⎡
−=
=
2
3
2sin
05sin
x
x
;
Zn
n
x ∈
π
= ,
5
.
№ 1196
1) cosx ⋅ sin9x = cos3x ⋅ sin7x,
()()
xxxx 10sin4sin
2
1
10sin8sin
2
1
+=+
,
sin8x – sin4x = 0, 2sin2x ⋅ cos6x = 0,
⎢
⎣
⎡
=
=
06cos
02sin
x
x
;
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
=
∈
π
=
Zl
l
x
Zn
n
x
,
612
,
2
Ответ:
Zn
n
x ∈
π
= ,
2
,
Zl
l
x ∈
π
+
π
= ,
612
;
2) sinxcos5x = sin9x ⋅ cos3x,
()()
xxxx 12sin6sin
2
1
6sin4sin
2
1
+=+−
,
sin12x + sin4x = 0, 2sin8x ⋅ cos4x = 0,
⎢
⎣
⎡
=
=
04cos
08sin
x
x
;
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
=
∈
π
=
Zl
l
x
Zn
n
x
,
48
,
8
Ответ:
Zn
n
x ∈
π
= ,
8
,
Zl
l
x ∈
π
+
π
= ,
48
.
№ 1197
1) 5 + sin2x = 5(sinx + cosx), 4 + (sinx + cosx)
2
= 5(sinx + cosx),
cosx + sinx = t
tx =
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
π
−
4
cos2, t
2
– 5t + 4 = 0, D = 25 – 16 = 9,
4
2
35
1
=
+
=t , 122
2
4
2
4
cos >===
⎟
⎠
⎞
⎜
⎝
⎛
π
−
t
x - нет решений,
1
2
35
t
2
=
−
= ,
2
1
2
4
cos ==
⎟
⎠
⎞
⎜
⎝
⎛
π
−
t
x ,