178
3
1
cos ±=x ,
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−π±=
∈π+±=
Zllx
Znnx
,2
3
1
arccos
,2
3
1
arccos
.
Ответ:
Znnx ∈π+±= ,2
3
1
arccos
, Zllx ∈π+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−π±= ,2
3
1
arccos
4) sin2x = cos
2
x, 2sin x ⋅ cos x – cos
2
x = 0, cos x(2sin x – cos x) = 0,
⎢
⎣
⎡
=−
=
0cossin2
0cos
xx
x
;
()
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
π
−=
∈π+
π
=
Zllx
Znnx
l
,
6
12
,
2
;
()
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
−=
∈
π
+
π
=
Zl
l
x
Zn
n
x
l
,
212
1
,
24
.
Ответ:
Znnx ∈π+
π
= ,
2
,
Zllarctgx ∈π+= ,
2
1
.
№ 1182
1) sin2x = 3cos x, 2sin x ⋅ cos x = 3cos x, cos x(2sin x – 3) = 0,
⎢
⎢
⎣
⎡
=
=
2
3
sin
0cos
x
x
;
⎢
⎢
⎣
⎡
φ∈
∈π+
π
=
x
Znnx ,
2
.
Ответ:
Znnx ∈π+
π
= ,
2
.
2) sin4x = cos
4
x – sin
4
x, 2sin2x ⋅ cos2x = (cos
2
x – sin
2
x)(sin
2
x + cos
2
x),
2sin2x ⋅ cos2x = cos2x, cos2x(2sin2x – 1) = 0,
⎢
⎢
⎣
⎡
=
=
2
1
2sin
02cos
x
x
;
()
⎢
⎢
⎢
⎢
⎣
⎡
∈π+
π
−=
∈π+
π
=
Zllx
Znnx
l
,
6
12
,
2
2
;
()
⎢
⎢
⎢
⎢
⎣
⎡
∈
π
+
π
=
∈
π
+
π
=
Zl
l
n
x
l
,
212
1-x
Zn ,
24
Ответ:
Zn
n
x ∈
π
+
π
= ,
24
,
()
Zl
l
x
l
∈
π
+
π
−= ,
212
1
.
3) 2cos
2
x = 1 + 4sin2x, (2cos
2
x – 1) = 4sin2x, cos2x = 4sin2x,
4
2sin
2cos
=
x
x
; ctg x = 4; x = arcctg4 + nπ, n ∈ Z.
Ответ: x = arcctg4 + nπ, n ∈ Z
4) 2cos x + cos2x = 2sin x, 2(cos x – sin x) + (cos
2
x – sin
2
x) = 0,
2(cos x – sin x) + (cos x – sin x)(cos x – sin x) = 0,
(cos x – sin x)(2 + cos x + sin x) = 0,
⎢
⎣
⎡
−=+
=−
2sincos
0sincos
xx
xx
;
Znnx ∈π+
π
= ,
4
x ∈
φ
Ответ:
Znnx ∈π+
π
= ,
4
.