600 CHAPTER 16 PLANE FRAME ANALYSIS U SING THE STIFFNESS METHOD
16
16.4 Application of the Stiffness Method
for Frame Analysis
Once the member stiffness matrices are established, they may be assembled
into the structure stiffness matrix in the usual manner. By writing the
structure matrix equation, the displacements at the unconstrained nodes
can be determined, followed by the reactions and internal loadings at the
nodes. Lateral loads acting on a member, fabrication errors, temperature
changes, inclined supports, and internal supports are handled in the same
manner as was outlined for trusses and beams.
Procedure for Analysis
The following method provides a means of finding the displacements,
support reactions, and internal loadings for members of statically
determinate and indeterminate frames.
Notation
• Divide the structure into finite elements and arbitrarily identify each
element and its nodes. Elements usually extend between points of
support, points of concentrated loads, corners or joints, or to points
where internal loadings or displacements are to be determined.
• Establish the x,y,z, global coordinate system, usually for convenience
with the origin located at a nodal point on one of the elements and the
axes located such that all the nodes have positive coordinates.
• At each nodal point of the frame, specify numerically the three x,
y, z coding components. In all cases use the lowest code numbers
to identify all the unconstrained degrees of freedom, followed by
the remaining or highest code numbers to identify the constrained
degrees of freedom.
• From the problem, establish the known displacements and
known external loads When establishing be sure to include
any reversed fixed-end loadings if an element supports an
intermediate load.
Structure Stiffness Matrix
• Apply Eq. 16–10 to determine the stiffness matrix for each element
expressed in global coordinates. In particular, the direction cosines
and are determined from the x, y coordinates of the ends of
the element, Eqs. 14–5 and 14–6.
• After each member stiffness matrix is written, and the six rows
and columns are identified with the near and far code numbers,
merge the matrices to form the structure stiffness matrix K. As a
partial check, the element and structure stiffness matrices should
all be symmetric.
l
y
l
x
Q
k
Q
k
.
D
k