16.2 DISPLACEMENT AND FORCE TRANSFORMATION MATRICES 597
16
16.2 Displacement and Force
Transformation Matrices
As in the case for trusses, we must be able to transform the internal
member loads q and deformations d from local coordinates to
global x, y, z coordinates. For this reason transformation matrices are
needed.
Displacement Transformation Matrix. Consider the frame
member shown in Fig. 16–2a. Here it is seen that a global coordinate
displacement creates local coordinate displacements
Likewise, a global coordinate displacement Fig. 16–2b, creates local
coordinate displacements of
Finally, since the and z axes are coincident, that is, directed out of the
page, a rotation about z causes a corresponding rotation about
Thus,
In a similar manner, if global displacements in the x direction,
in the y direction, and a rotation are imposed on the far end of the
member, the resulting transformation equations are, respectively,
Letting represent the direction cosines of the
member, we can write the superposition of displacements in matrix
form as
(16–3)
or
(16–4)
By inspection, T transforms the six global x, y, z displacements D into
the six local displacements d. Hence T is referred to as the
displacement transformation matrix.
z¿y¿,x¿,
d = TD
F
d
Nx¿
d
Ny¿
d
Nz¿
d
Fx¿
d
Fy¿
d
Fz¿
V= F
l
x
l
y
0000
-l
y
l
x
0000
001000
000l
x
l
y
0
000-l
y
l
x
0
000001
VF
D
Nx
D
Ny
D
Nz
D
Fx
D
Fy
D
Fz
V
l
y
= cos u
y
l
x
= cos u
x
,
d
Fz¿
= D
Fz
d
Fx¿
= D
Fy
cos u
y
d
Fy¿
= D
Fy
cos u
x
d
Fx¿
= D
Fx
cos u
x
d
Fy¿
=-D
Fx
cos u
y
D
Fz
D
Fy
D
Fx
d
Nz¿
= D
Nz
z¿.
d
Nz¿
D
Nz
z¿
d
Nx¿
= D
Ny
cos u
y
d
Ny¿
= D
Ny
cos u
x
D
Ny
,
d
Nx¿
= D
Nx
cos u
x
d
Ny¿
=-D
Nx
cos u
y
D
Nx
z¿y¿,x¿,
D
Nx
(a)
d
Ny¿
D
Nx
cos u
y
d
Nx¿
D
Nx
cos u
x
u
y
u
x
y¿
x¿
y
x
(b)
D
Ny
u
y
u
x
d
Ny¿
D
Ny
cos u
x
d
Nx¿
D
Ny
cos u
y
y¿
x¿
y
x
Fig. 16–2