264 CHAPTER 7APPROXIMATE ANALYSIS OF S TATICALLY INDETERMINATE STRUCTURES
Realize that, in a general sense, all methods of structural analysis are
approximate, simply because the actual conditions of loading, geometry,
material behavior, and joint resistance at the supports are never known in
an exact sense. In this text, however, the statically indeterminate analysis of
a structure will be referred to as an exact analysis, and the simpler statically
determinate analysis will be referred to as the approximate analysis.
7.2 Trusses
A common type of truss often used for lateral bracing of a building or
for the top and bottom cords of a bridge is shown in Fig. 7–1a. (Also see
Fig. 3–4.) When used for this purpose, this truss is not considered a
primary element for the support of the structure, and as a result it is
often analyzed by approximate methods. In the case shown, it will be
noticed that if a diagonal is removed from each of the three panels, it
will render the truss statically determinate. Hence, the truss is statically
indeterminate to the third degree (using Eq. 3–1, or
) and therefore we must make three assumptions
regarding the bar forces in order to reduce the truss to one that is
statically determinate. These assumptions can be made with regard to
the cross-diagonals, realizing that when one diagonal in a panel is in
tension the corresponding cross-diagonal will be in compression. This is
evident from Fig. 7–1b, where the “panel shear” V is carried by the
vertical component of tensile force in member a and the vertical
component of compressive force in member b. Two methods of analysis
are generally acceptable.
Method 1: If the diagonals are intentionally designed to be long
and slender, it is reasonable to assume that they cannot
support a compressive force; otherwise, they may easily
buckle. Hence the panel shear is resisted entirely by the
tension diagonal, whereas the compressive diagonal is
assumed to be a zero-force member.
Method 2: If the diagonal members are intended to be constructed
from large rolled sections such as angles or channels, they
may be equally capable of supporting a tensile and
compressive force. Here we will assume that the tension and
compression diagonals each carry half the panel shear.
Both of these methods of approximate analysis are illustrated
numerically in the following examples.
16 + 3 7 8122
b + r 7 2j,
7
a
b
P
2
P
1
(a)
R
1
R
2
F
2
F
1
R
1
F
b
F
a
V R
1
(b)
Fig. 7–1
An approximate method can be used to determine the
forces in the cross bracing in each panel of this bascule
railroad bridge. Here the cross members are thin and
so we can assume they carry no compressive force.