
120 CHAPTER 3ANALYSIS OF STATICALLY DETERMINATE TRUSSES
3
3.8 Space Trusses
A space truss consists of members joined together at their ends to form
a stable three-dimensional structure. In Sec. 3–2 it was shown that the
simplest form of a stable two-dimensional truss consists of the members
arranged in the form of a triangle. We then built up the simple plane
truss from this basic triangular element by adding two members at a
time to form further elements. In a similar manner, the simplest element
of a stable space truss is a tetrahedron, formed by connecting six members
together with four joints as shown in Fig. 3–34. Any additional members
added to this basic element would be redundant in supporting the force
P. A simple space truss can be built from this basic tetrahedral element
by adding three additional members and another joint forming
multiconnected tetrahedrons.
Determinacy and Stability. Realizing that in three dimensions
there are three equations of equilibrium available for each joint
then for a space truss with j number of joints, 3j
equations are available. If the truss has b number of bars and r number of
reactions, then like the case of a planar truss (Eqs. 3–1 and 3–2) we can write
(3–3)
The external stability of the space truss requires that the support
reactions keep the truss in force and moment equilibrium about any and
all axes.This can sometimes be checked by inspection, although if the truss
is unstable a solution of the equilibrium equations will give inconsistent
results. Internal stability can sometimes be checked by careful inspection
of the member arrangement. Provided each joint is held fixed by its
supports or connecting members, so that it cannot move with respect to
the other joints, the truss can be classified as internally stable. Also, if we
do a force analysis of the truss and obtain inconsistent results, then the
truss configuration will be unstable or have a “critical form.”
Assumptions for Design. The members of a space truss may be
treated as axial-force members provided the external loading is applied
at the joints and the joints consist of ball-and-socket connections. This
assumption is justified provided the joined members at a connection
intersect at a common point and the weight of the members can be
neglected. In cases where the weight of a member is to be included in the
analysis, it is generally satisfactory to apply it as a vertical force, half of its
magnitude applied to each end of the member.
For the force analysis the supports of a space truss are generally
modeled as a short link, plane roller joint, slotted roller joint, or a
ball-and-socket joint. Each of these supports and their reactive force
components are shown in Table 3–1.
b + r 7 3j
statically indeterminate—check stability
b + r = 3j
statically determinate—check stability
b + r 6 3j
unstable truss
©F
y
= 0, ©F
z
= 02,
1©F
x
= 0,
Fig. 3–34
P
The roof of this pavilion is supported using
a system of space trusses.