Table 14.2.3.2. Space groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes
Wyckoff positions of the same Wyckoff set can be recognized by their consecutive listing without repetition of the reference symbol. Characteristic Wyckoff sets
are marked by asterisks.
1 P1
1 a 1 P
1 aP[xyz]
2 P
1
1 a
1
P
1 aP
1 b 00
1
2
P
1 c 0
1
2
0 P
1 d
1
2
00 P
1 e
1
2
1
2
0 P
1 f
1
2
0
1
2
P
1 g 0
1
2
1
2
P
1 h
1
2
1
2
1
2
P
2 i 1
P
1 iP2xyz
3 P2
1 a 2 P2=ma P[y]
1 b 00
1
2
P[y]
1 c
1
2
00 P[y]
1 d
1
2
0
1
2
P[y]
2 e 1 P2 =mm P2xz[y]
4 P2
1
2 a 1 P2
1
=me 2
1
P
b
ACI1xz[y]
5 C2
2 a 2 C2=ma C[y]
2 b 00
1
2
C[y]
4 c 1 C2=mi C2xz[y]
6 Pm
1 am P2=ma P[xz]
1 b 0
1
2
0 P[xz]
2 c 1 P2 =mi P2y[xz]
7 Pc
2 a 1 P2=ce cP
c
A1y[xz]
8 Cm
2 am C2=ma C[xz]
4 b 1 C2=mg C2y[xz]
9 Cc
4 a 1 C2=ce
1 C
c
F1y[ xz]
10 P2=m
1 a 2=m
P2=ma P
1 b 0
1
2
0 P
1 c 00
1
2
P
1 d
1
2
00 P
1 e
1
2
1
2
0 P
1 f 0
1
2
1
2
P
1 g
1
2
0
1
2
P
1 h
1
2
1
2
1
2
P
2 i 2
P2=mi P2y
2 j
1
2
00 P2y
2 k 00
1
2
P2y
2 l
1
2
0
1
2
P2y
2 mm
P2=mm P2xz
2 n 0
1
2
0 P2xz
4 o 1
P2=mo P2xz2y
11 P2
1
=m
2 a
1 P2=ma P
b
2 b
1
2
00 P
b
2 c 00
1
2
P
b
2 d
1
2
0
1
2
P
b
2 em
P2
1
=me 0
1
4
02
1
P
b
ACI1xz
4 f 1
P2
1
=mf mP
b
2xyz
12 C2=m
2 a 2=m
C2=ma C
2 b 0
1
2
0 C
2 c 00
1
2
C
2 d 0
1
2
1
2
C
4 e
1 P2=ma
1
4
1
4
0 P
ab
4 f
1
4
1
4
1
2
P
ab
4 g 2
C2=mg C2y
4 h 00
1
2
C2y
4 im
C2=mi C2xz
8 j 1
C2=mj C2xz2y
13 P2=c
2 a
1 P2=ma P
c
2 b
1
2
1
2
0 P
c
2 c 0
1
2
0 P
c
2 d
1
2
00 P
c
2 e 2
P2=ce 00
1
4
cP
c
A1y
2 f
1
2
0
1
4
cP
c
A1y
4 g 1
P2=cg 2 P
c
2xyz
14 P2
1
=c
2 a
1 C2=ma A
2 b
1
2
00 A
2 c 00
1
2
A
2 d
1
2
0
1
2
A
4 e 1
P2
1
=ce cA2xyz
15 C2=c
4 a
1 C2=ma C
c
4 b 0
1
2
0 C
c
4 c
1
4
1
4
0 F
4 d
1
4
1
4
1
2
F
4 e 2
C2=ce 00
1
4
1 C
c
F1y
8 f 1
C2=cf 2
1
C
c
2xyz
16 P222
1 a 222 Pmmm a P
1 b
1
2
00 P
1 c 0
1
2
0 P
1 d 00
1
2
P
1 e
1
2
1
2
0 P
1 f
1
2
0
1
2
P
1 g 0
1
2
1
2
P
1 h
1
2
1
2
1
2
P
851
14.2. SYMBOLS AND PROPERTIES OF LATTICE COMPLEXES