CONTINUED No. 191 P6/mmm
Generators selected (1); t(1, 0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13)
Positions
Multiplicity,
Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
24 r 1(1)x,y,z (2) ¯y, x − y, z (3) ¯x+ y, ¯x,z
(4) ¯x, ¯y, z (5) y, ¯x + y,z (6) x − y,x, z
(7) y,x, ¯z (8) x − y, ¯y, ¯z (9) ¯x, ¯x + y, ¯z
(10) ¯y, ¯x, ¯z (11) ¯x+ y,y, ¯z (12) x,x − y
, ¯z
(13) ¯x, ¯y, ¯z (14) y, ¯x + y, ¯z (15) x − y,x, ¯z
(16) x,y, ¯z (17) ¯y,x − y, ¯z (18) ¯x+ y, ¯x, ¯z
(19) ¯y, ¯x,z (20) ¯x+ y,y,z (21) x, x − y,z
(22) y,x,z (23) x − y, ¯y,z (24) ¯x, ¯x + y
,z
no conditions
Special: no extra conditions
12 qm.. x , y,
1
2
¯y,x − y,
1
2
¯x + y, ¯x,
1
2
¯x, ¯y,
1
2
y, ¯x + y,
1
2
x − y, x,
1
2
y, x,
1
2
x − y, ¯y,
1
2
¯x, ¯x + y,
1
2
¯y, ¯x,
1
2
¯x+ y,y,
1
2
x,x − y,
1
2
12 pm.. x,y,0¯y,x − y, 0¯x + y, ¯x,0¯x, ¯y,0 y, ¯x + y, 0 x− y,x, 0
y, x,0 x − y, ¯y,0¯x, ¯x + y, 0¯y, ¯x,0¯x + y,y, 0 x,x − y,0
12 o . m . x,2x,z 2¯x, ¯x
,zx, ¯x,z ¯x,2¯x,z 2x,x, z ¯x,x,z
2x,x, ¯z ¯x,2¯x, ¯z ¯x,x, ¯z 2¯x, ¯x, ¯zx,2x, ¯zx, ¯x, ¯z
12 n ..mx,0,z 0,x, z ¯x, ¯x,z ¯x, 0,z 0, ¯x, zx,
x,z
0,x, ¯zx,0, ¯z ¯x, ¯x, ¯z 0, ¯x, ¯z ¯x,0, ¯zx,x, ¯z
6 mmm2 x,2x,
1
2
2¯x, ¯x,
1
2
x, ¯x,
1
2
¯x,2¯x,
1
2
2x,x,
1
2
¯x,x,
1
2
6 lmm2 x, 2x,02¯x, ¯x, 0 x, ¯x, 0¯x,2¯x, 02x, x,0¯x, x,0
6 km2 mx,0,
1
2
0,x,
1
2
¯x, ¯x,
1
2
¯x,0,
1
2
0, ¯x,
1
2
x,x,
1
2
6 jm2 mx,0 , 00,x,0¯x, ¯x,0¯x,0,00, ¯x,0 x,x , 0
6 i 2 mm
1
2
,0, z 0,
1
2
,z
1
2
,
1
2
,z 0,
1
2
, ¯z
1
2
,0, ¯z
1
2
,
1
2
, ¯z
4 h 3 m .
1
3
,
2
3
,z
2
3
,
1
3
,z
2
3
,
1
3
, ¯z
1
3
,
2
3
, ¯z
3 gmmm
1
2
,0,
1
2
0,
1
2
,
1
2
1
2
,
1
2
,
1
2
3 fmmm
1
2
,0, 00,
1
2
,0
1
2
,
1
2
,0
2 e 6 mm 0, 0,z 0,0, ¯z
2 d
¯
6 m 2
1
3
,
2
3
,
1
2
2
3
,
1
3
,
1
2
2 c
¯
6 m 2
1
3
,
2
3
,0
2
3
,
1
3
,0
1 b 6/ mmm 0,0,
1
2
1 a 6/ mmm 0,0,0
Symmetry of special projections
Along [001] p6mm
a
= ab
= b
Origin at 0,0,z
Along [100] p2mm
a
=
1
2
(a + 2b) b
= c
Origin at x,0,0
Along [210] p2mm
a
=
1
2
bb
= c
Origin at x,
1
2
x,0
(Continued on preceding page)
595