CONTINUED No. 189 P
¯
62m
Generators selected (1); t(1, 0,0); t(0,1,0); t(0,0,1); (2); (4); (7)
Positions
Multiplicity,
Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
12 l 1(1)x, y,z (2) ¯y,x − y,z (3) ¯x + y, ¯x,z
(4) x,y, ¯z (5) ¯y,x − y, ¯z (6) ¯x + y, ¯x, ¯z
(7) y,x, ¯z (8) x − y, ¯y, ¯z (9) ¯x, ¯x + y, ¯z
(10) y,x,z (11) x − y, ¯y,z (12) ¯x, ¯x +
y, z
no conditions
Special: no extra conditions
6 km.. x, y,
1
2
¯y,x − y,
1
2
¯x + y, ¯x,
1
2
y, x,
1
2
x − y, ¯y,
1
2
¯x, ¯x + y,
1
2
6 jm.. x, y,0¯y,x − y,0¯x + y, ¯x,0 y,x, 0 x − y, ¯y,0¯x, ¯x + y,0
6 i ..mx,0,z 0,x, z ¯x, ¯x, zx,0, ¯z 0,x , ¯z ¯x, ¯x, ¯z
4 h 3 ..
1
3
,
2
3
,z
1
3
,
2
3
, ¯z
2
3
,
1
3
, ¯z
2
3
,
1
3
,z
3 gm2 mx,0,
1
2
0,x,
1
2
¯x, ¯x,
1
2
3 fm2 mx,0,00,x,0¯x, ¯x,0
2 e 3 . m 0,0,z 0,0, ¯z
2 d
¯
6 ..
1
3
,
2
3
,
1
2
2
3
,
1
3
,
1
2
2 c
¯
6 ..
1
3
,
2
3
,0
2
3
,
1
3
,0
1 b
¯
62m 0, 0,
1
2
1 a
¯
62m 0, 0,0
Symmetry of special projections
Along [001] p31m
a
= ab
= b
Origin at 0,0,z
Along [100] p2mm
a
=
1
2
(a + 2b) b
= c
Origin at x,0,0
Along [210] p11m
a
=
1
2
bb
= c
Origin at x,
1
2
x,0
Maximal non-isomorphic subgroups
I
[2] P
¯
611 (P
¯
6, 174) 1; 2; 3; 4; 5; 6
[2] P31m (157) 1; 2; 3; 10; 11; 12
[2] P321 (150) 1; 2; 3; 7; 8; 9
[3] Pm2m (Amm2, 38) 1; 4; 7; 10
[3] Pm2m (Amm2, 38) 1; 4; 8; 11
[3] Pm2m (Amm2, 38) 1; 4; 9; 12
IIa none
IIb [2] P
¯
62c (c
= 2c) (190); [3] H
¯
62m (a
= 3a,b
= 3b)(P
¯
6m2, 187)
Maximal isomorphic subgroups of lowest index
IIc
[2] P
¯
62m (c
= 2c) (189); [4] P
¯
62m (a
= 2a,b
= 2b) (189)
Minimal non-isomorphic supergroups
I
[2] P6/mmm(191); [2] P6
3
/mcm (193)
II [3] H
¯
62m (P
¯
6m2, 187)
591