δ(p, A
l
) = (q, A
m
, α) p ∈ {q
0
, q
1
, . . . , q
m
} q ∈ Q l, m ∈
{1, . . . , r} α ∈ {N, L, R}
M
|Q| |Γ | M
Code(M) = #0
m+3
#0
r
##Co de(Transition
1
)#Code(Transition
2
)# . . . .
q
0
q
1
q
2
q
accept
q
reject
¢ → ¢, R
¢ → ¢, R
0 → 0, R
0 → 0, R
1 → 1, R
t
→
t
, L
a → a, N
b → b, N
a ∈ {0, 1,
t
}
b ∈ {1, ¢,
t
}
M
• Code(M) M
Code(M) #
• L(M)
• L(M)
Σ
bool
h : {0, 1, #}
∗
→ (Σ
bool
)
∗
,
h(#) = 01, h(0) = 00, h(1) = 11.
MT M
Kod(M ) = h(Co de(M ))
M
KodMT = {Kod(M) | M MT}
Kod(M)
M Kod(M)
M