( MT) M =
(Q, Σ, Γ, δ, q
0
, q
accept
, q
reject
)
• Q M
• Σ ¢
t
Σ
{Σ
}
• Γ Σ ⊆ Γ ¢,
t
∈ Γ
{Γ
}
• δ : (Q − {q
accept
, q
reject
}) × Γ → Q × Γ × {L, R, N}
M
δ(q, ¢) ∈ Q ×{¢} × {R, N}
q ∈ Q − {q
accept
, q
reject
}
{δ
M M (q, X, Z) ∈
Q ×Γ ×{L, R, N} M p Y ∈ Γ
δ(p, Y ) = (q, X, Z)
p q Y X
Z Z = L M
Z = R Z = N
δ(q, ¢) ∈ Q × {¢} × {R, N}
M ¢
}
• q
0
∈ Q
• q
accept
∈ Q
{M
M q
accept
q
accept
}
• q
reject
∈ Q − {q
accept
}
{ M q
reject
M (
) }
C M
conf(M ) = {¢} · Γ
∗
· Q · Γ
+
∪ Q · {¢} · Γ
∗
.
{
w
1
qaw
2
w
1
∈ {¢}Γ
∗
w
2
∈ Γ
∗
a ∈ Γ q ∈ Q ( )
M q
8
M