M
q ∈ Q − {q
accept
} p ∈ Q X, Y, Z ∈ Γ
(qX, Y p), δ(q, X) = (p, Y, R);
(ZqX, pZY ), δ(q, X) = (p, Y, L);
(q#, Y p#),
δ(q,
t
) = (p, Y, R);
(Zq#, pZY #), δ(q ,
t
) = (p, Y, L).
M w q
accept
q
accept
Γ ∪{¢} X, Y ∈ Γ ∪{¢}
(Xq
accept
Y, q
accept
);
(Xq
accept
, q
accept
);
(q
accept
Y, q
accept
).
q
accept
q
accept
#
(q
accept
##, #)
(A, B)
M = ({q
0
, q
1
, q
accept
, q
reject
}, {0, 1}, {¢, 0, 1,
t
}, δ
M
, q
accept
, q
reject
),
w = 01
(#, #q
0
¢01#).
(0, 0), (1, 1), (¢, ¢), ($, $), (#, #).
(q
0
1, 1q
0
), (q
0
0, 0q
1
), (q
0
¢, ¢q
1
),
(1q
0
#, q
accept
1#), (0q
0
#, q
accept
0#)
(q
1
1, 1q
1
), (q
1
0, 0q
0
), (1q
1
#, q
reject
1#), (0q
1
#, q
reject
0#).
(0q
accept
0, q
accept
), (1q
accept
1, q
accept
), (1q
accept
0, q
accept
),
(0q
accept
1, q
accept
), (0q
accept
, q
accept
), (1q
accept
, q
accept
),
(q
accept
0, q
accept
), (q
accept
1, q
accept
),
(¢q
accept
, q
accept
), (q
accept
¢, q
accept
),
(¢q
accept
a, q
accept
), (aq
accept
¢, q
accept
)
a ∈ {0, 1}
(q
accept
##, #)