
400 G. Bal
17. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, Comparison of
finite-difference transport and diffusion calculations for photon migration in
homogeneous and heterogeneous tissues, Phys. Med. Biol., 43 (1998), pp. 1285–
1302.
18. A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE Press,
New York, 1997.
19. E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport
problems for small mean free paths, J. Math. Phys., 15 (1974), pp. 75–81.
20. E. W. Larsen and J. E. Morel, Asymptotic Solutions of Numerical Trans-
port Problems in Optically Thick Diffusive Regimes II,J.Comp.Phys.,83
(1989), p. 212.
21. E. W. Larsen, J. E. Morel, and W. F. Miller Jr., Asymptotic solutions
of numerical transport problems in optically thick, diffusive regimes,J.Comp.
Phys., 69 (1987), pp. 283–324.
22. C. D. Levermore, W. J. Morokoff, and B. T. Nadiga, Moment realizabil-
ity and the validity of the Navier-Stokes equations for rarefied gas dynamics,
Phys. Fluids, 10(12) (1998), pp. 3214–3226.
23. E. E. Lewis and W. F. Miller Jr., Computational Methods of Neutron
Transport, J. Wiley and sons, New York, 1984.
24. T. A. Manteuffel and K. Ressel, Least-squares finite-element solution of
the neutron transport in diffusive regimes, SIAM J. Numer. Anal., 35(2) (1998),
pp. 806–853.
25. T. A. Manteuffel, K. Ressel, and G. Starke, A boundary functional
for the least-squares finite-element solution of the neutron transport equation,
SIAM J. Numer. Anal., 37(2) (2000), pp. 556–586.
26. J. E. Morel and J. M. McGhee, A self-adjoint angular flux equation,Nucl.
Sci. Eng., 132 (1999), pp. 312–325.
27. J. Planchard, M´ethodes math´ematiques en neutronique (in French), Collec-
tion de la Direction des Etudes et Recherches d’EDF, Eyrolles, 1995.
28. M. Reed and B. Simon, Methods of modern mathematical physics. I. Func-
tional analysis, Academic Press, Inc., New York, second ed., 1980.
29. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani,
Boundary conditions for light propagation in diffuse media with non-scattering
regions, J. Opt. Soc. Amer. A, 17(9) (2000), pp. 1671–1681.
30. R. P. Rulko, D. Tomasevic, and E. W. Larsen, Variational P1 Approxi-
mations of General-Geometry Multigroup Transport Problems, Nucl. Sci. Eng.,
121 (1995), p. 393.
31. H. Sato and M. C. Fehler, Seismic wave propagation and scattering in the
heterogeneous earth, AIP series in modern acoustics and signal processing, AIP
Press, Springer, New York, 1998.
32. W. M. Stacey, Variational Methods in Nuclear Reactor Physics, Academic
Press, New York, 1974.
33. M. D. Tidriri, Asymptotic analysis of a coupled system of kinetic equations,
C.R. Acad. Sci. Paris, t.328, S´erie I Math., (1999), pp. 637–642.
34.
, Rigorous derivation and analysis of coupling of kinetic equations and
their hydrodynamic limits for a simplified boltzmann model, J. Statist. Phys.,
104 (2001).