Springer, Berlin, Heidelberg, New York, 2006, 535 pp.
Существует множество физических и технических задач, где значительная часть импульса и энергии, переносится частицами. В зависимости от конкретного приложения это могут быть фотоны, нейтроны, нейтрино, или заряженные частицы. Независимо от физики явлений, возникает проблема решения линейного или нелинейного кинетического уравнения Больцмана (уравнения переноса).
There exist a wide range of applications where a significant fraction of the momentum and energy present in a physical problem is carried by the transport of particles. Depending on the specific application, the particles involved may be photons, neutrons, neutrinos, or charged particles. Regardless of which phenomena is being described, at the heart of each application is the fact that a Boltzmann like transport equation has to be solved.
Contents
Astrophysics:
Fryer L. Radiation Hydrodynamics in Astrophysics.
Hubeny I. Radiative Transfer in Astrophysical Applications.
Mezzacappa, et al. Neutrino Transport in Core Collapse Supeovae.
Morel J.E. Discrete-Ordinates Methods for Radiative Transfer in the Non-Relativistic Stellar.
Atmospheric Science, Oceanography, and Plant Canopies:
Davis A.B. Effective Propagation Keels in Structured Media with Broad Spatial Correlations.
Kassianov E.I. Mathematical Simulation of the Radiative Transfer in Statistically Inhomogeneous Clouds.
McCormick N.J. Transport Theory for Optical Oceanography.
Polonsky, et al. Perturbation Technique in 3D Cloud Optics: Theory and Results.
Ganapol B.D. Vegetation Canopy Reflectance Modeling with Turbid Medium Radiative Transfer.
Widlowski, et al. A Virtual Laboratory for Rapid BRF Simulations Over 3-D Plant Canopies.
High Energy Density Physics:
Shagaliev et al. Use of the Space Adaptive Algorithm to Solve 2D Problems of Photon Transport and Interaction with Medium.
Szoke, et al. Accurate and Efficient Radiation Transport in Optically Thick Media by Means of the Symbolic Implicit Monte Carlo Method in the Difference Formulation.
Daffin, et al. An Evaluation of the Difference Formulation for Photon Transport in a Two Level System.
Scott H.A. Non-LTE Radiation Transport in High Radiation Plasmas.
Shagaliev, et al. Finite-Difference Methods Implemented in SATURN Complex to Solve Multidimensional Time-Dependent Transport Problems.
Mathematics and Computer Science:
Bal G. Transport Approximations in Partially Diffusive Media.
Bihari B.L. , Brown P.N. High Order Finite Volume Nonlinear Schemes for the Boltzmann Transport Equation.
Gentile, et al. Obtaining Identical Results on Varying Numbers of Processors in Domain Decomposed Particle Monte Carlo Simulations.
Shagaliev, et al. KM-Method of Iteration Convergence Acceleration for Solving a 2D Time-Dependent Multiple-Group Transport Equation and its Modifications.
Prinja A.K. , Franke B.C. A Regularized Boltzmann Scattering Operator for Highly Forward Peaked Scattering.
McClarren, et al. Implicit Riemann Solvers for the Pn Equations.
Swesty F.D. The Solution of the Time Dependent SN Equations on Parallel Architectures.
Shagaliev, et al. Different Algorithms of 2D Transport Equation Parallehzation on Random Non-Orthogonal Grids.
Neutron Transport:
Clouse C.J. Parallel Deterministic Neutron Transport with AMR.
Larsen E.W. An Overview of Neutron Transport Problems and Simulation Techniques.
Существует множество физических и технических задач, где значительная часть импульса и энергии, переносится частицами. В зависимости от конкретного приложения это могут быть фотоны, нейтроны, нейтрино, или заряженные частицы. Независимо от физики явлений, возникает проблема решения линейного или нелинейного кинетического уравнения Больцмана (уравнения переноса).
There exist a wide range of applications where a significant fraction of the momentum and energy present in a physical problem is carried by the transport of particles. Depending on the specific application, the particles involved may be photons, neutrons, neutrinos, or charged particles. Regardless of which phenomena is being described, at the heart of each application is the fact that a Boltzmann like transport equation has to be solved.
Contents
Astrophysics:
Fryer L. Radiation Hydrodynamics in Astrophysics.
Hubeny I. Radiative Transfer in Astrophysical Applications.
Mezzacappa, et al. Neutrino Transport in Core Collapse Supeovae.
Morel J.E. Discrete-Ordinates Methods for Radiative Transfer in the Non-Relativistic Stellar.
Atmospheric Science, Oceanography, and Plant Canopies:
Davis A.B. Effective Propagation Keels in Structured Media with Broad Spatial Correlations.
Kassianov E.I. Mathematical Simulation of the Radiative Transfer in Statistically Inhomogeneous Clouds.
McCormick N.J. Transport Theory for Optical Oceanography.
Polonsky, et al. Perturbation Technique in 3D Cloud Optics: Theory and Results.
Ganapol B.D. Vegetation Canopy Reflectance Modeling with Turbid Medium Radiative Transfer.
Widlowski, et al. A Virtual Laboratory for Rapid BRF Simulations Over 3-D Plant Canopies.
High Energy Density Physics:
Shagaliev et al. Use of the Space Adaptive Algorithm to Solve 2D Problems of Photon Transport and Interaction with Medium.
Szoke, et al. Accurate and Efficient Radiation Transport in Optically Thick Media by Means of the Symbolic Implicit Monte Carlo Method in the Difference Formulation.
Daffin, et al. An Evaluation of the Difference Formulation for Photon Transport in a Two Level System.
Scott H.A. Non-LTE Radiation Transport in High Radiation Plasmas.
Shagaliev, et al. Finite-Difference Methods Implemented in SATURN Complex to Solve Multidimensional Time-Dependent Transport Problems.
Mathematics and Computer Science:
Bal G. Transport Approximations in Partially Diffusive Media.
Bihari B.L. , Brown P.N. High Order Finite Volume Nonlinear Schemes for the Boltzmann Transport Equation.
Gentile, et al. Obtaining Identical Results on Varying Numbers of Processors in Domain Decomposed Particle Monte Carlo Simulations.
Shagaliev, et al. KM-Method of Iteration Convergence Acceleration for Solving a 2D Time-Dependent Multiple-Group Transport Equation and its Modifications.
Prinja A.K. , Franke B.C. A Regularized Boltzmann Scattering Operator for Highly Forward Peaked Scattering.
McClarren, et al. Implicit Riemann Solvers for the Pn Equations.
Swesty F.D. The Solution of the Time Dependent SN Equations on Parallel Architectures.
Shagaliev, et al. Different Algorithms of 2D Transport Equation Parallehzation on Random Non-Orthogonal Grids.
Neutron Transport:
Clouse C.J. Parallel Deterministic Neutron Transport with AMR.
Larsen E.W. An Overview of Neutron Transport Problems and Simulation Techniques.