140 10 Ginzburg–Landau Theory
a stationary state problem, it is not immediately clear how to describe its temporal
evolution.
In summary, we derived the GL equation from first principles. In the deriva-
tion we found that the particles which are described by the GL wavefunction
⌿
(r) must be bosons. We took the view that ⌿
(r) represents the bosonically
condensed pairons. This explains the quantum nature of the wavefunction. In fact
⌿
(r) =
r
|
n
1/2
|
σ
is a mixed representation of the pairon squareroot density op-
erator n
1/2
in terms of the position r and the momentum state σ . The new density
condition is given by ⌿
∗
σ
(r)⌿
σ
(r) = n
σ
(r) =condensed pairon density. The nonlin-
earity of the GL equation arises from the point-like repulsive interpairon interaction.
In 1950 when Ginzburg and Landau published their work, the Cooper pair (pairon)
was not known. They simply assumed the superelectron model. The expansion pa-
rameters (α, β) in the GL theory are identified as the negative of the pairon binding
energy and the repulsive interpairon interaction strength. This eventually leads to a
remarkable result that the temperature-dependent condensed pairon density n
0
(T )
is proportional to the pairon energy gap
g
(T ) for all temperatures below T
c
.
References
1. V. L. Ginzburg and L. D. Landau, J. Exp. Theor. Phys. (USSR) 20, 1064 (1950).
2. L. D. Landau and E. M. Lifshitz, Statistical Physics, part I, 3rd ed. (Pergamon Press, Oxford,
England, 1980) pp. 171–174.
3. F. London and H. London, Proc. Roy. Soc. (London) A 149, 71 (1935).
4. F. London and H. London, Physica 2, 341 (1935).
5. P. G. de Genne, Superconductivity of Metals and Alloys (Addison-Wesley, Redwood City, CA,
1989) pp. 176–209.
6. A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).
7. H. Tr
¨
auble and U. Essmann, J. Appl. Phys. 39, 4052 (1968).
8. B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961).
9. R. Doll and M. N
¨
abauer, Phys. Rev. Lett. 7, 51 (1961) (experiment).
10. L. Onsager, Phys. Rev. Lett. 7, 50 (1961).
11. N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961) (theory).
12. L. N. Cooper, Phys. Rev. 104, 1189 (1956).
13. J. Bardeen, L. Cooper and J. Schrieffer, Phys. Rev. 108, 1175 (1957).
14. S. Fujita and S. Godoy, Int. J. Mod. Phys. B 12, 99 (1998).
15. J. Supercond. 6, 373 (1993).
16. I. Giaever, Phys. Rev. Lett. 5, 147 (1960).
17. I. Giaever, Phys. Rev. Lett. 5, 464 (1960).
18. I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).
19. P. A. M. Dirac, Proc. Roy. Soc. (London) A 114, 243 (1927).
20. P. Jordan and E. Wigner, Zeits. f. Phys. 47, 631 (1928).
21. P. Jordan and O. Klein, Zeits. f. Phys. 45, 751 (1927).
22. L. P. Gorkov, Sov. Phys. JETP 7, 505 (1958).
23. L. P. Gorkov, Sov. Phys. JETP 9, 1364 (1959).
24. L. P. Gorkov, Sov. Phys. JETP 10, 998 (1960).
25. N. R. Werthamer, Phys. Rev. 132, 663 (1963).
26. N. R. Werthamer, Rev. Mod. Phys. 36, 292 (1964).
27. T. Tewardt, Phys. Rev. 132, 595 (1963).