5.4 The Multistep BDF Method 251
5. K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical solution
of initial-value problems in differential-algebraic equations, 2nd Edition,
SIAM, 1996.
6. S. D. Conte and C. de Boor, Elementary Numerical Analysis, 3rd-Edition,
McGraw-Hill, 1980.
7. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, New Jersey, 1983.
8. P. Dueflhard and F. Bornemann, Scientific computing with ordinary dif-
ferential equations, Springer, 2002.
9. C. W. Gear, G. K. Gupta and B. Leimkuhler, “Automatic integration
of Euler Lagrange equations with constraints,” J. Comput. Appl. Math.,
12, 13, 77–90, 1985.
10. K. Gustafsson, M. Lundh and G. S¨oderlind, “A PI stepsize control for
the numerical integration of ordinary differential equations,” JBIT, 28,
270–287, 1988.
11. E. Hairer, C. Lubich and M. Roche, The numerical solution of differential-
algebraic systems by Runge-Kutta methods, Lecture Notes in Mathemat-
ics, 1409, Springer-Verlag, 1989.
12. E. Hairer, P. Norsett and G. Wanner, Solving ordinary differential equa-
tions I: Nonstiff Problems, 2nd. Edition, Springer, 1993.
13. E. Hairer and G. Wanner, Solving ordinary differential equations II: Stiff
and Differential-Algebraic Problems, 2nd. Edition, Springer, 1996.
14. A. C. Hindmarsh and L. R. Petzold, “Algorithms and software for ordi-
nary differential equations and differential-algebraic equations, Part II:
Higher-order methods and software packages,” Computers in Physics, 9,
148–155, 1995.
15. Ch. Lubich and M. Roche, “Rosenbrock methods for differential-algebraic
systems with solution-dependent singular matrix multiplying the deriva-
tive,” Computing, 43, 325–342, 1990.
16. H. Olsson and G. S¨oderlind, “Stage value predictors and efficient New-
ton iteration in implicit Runge-Kutta methods,” SIAM Journal Scientific
Computing, 20, 185–202, 1990.
17. L. F. Shampine, “Solving 0 = F (t, y(t), y
0
(t)) in Matlab,” J. Numer.
Math., 10, 291–310, 2002.
18. L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM
Journal on Scientific Computing, 18, 1–22, 1997.
19. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-
Verlag, New York, (2002)
20. J. de Swart and G. S¨oderlind, “On the construction of error estimators for
implicit Runge-Kutta methods,” Journal of Computational and Applied
Mathematics, 87, 347–358, 1997.