
Empirical and analytical hydrodynamics 55
9. B. Ghosh. A study of the spouted bed, part I – a theoretical analysis. Indian Chem. Engineer,
7 (1965), 16–19.
10. J. R. Grace and C. J. Lim. Permanent jet formation in beds of particulate solids. Can. J. Chem.
Eng., 65 (1987), 160–162.
11. K. B. Mathur and N. Epstein. Spouted Beds (New York: Academic Press, 1974).
12. Y. Li, C. J. Lim, and N. Epstein. Aerodynamic aspects of spouted beds at temperatures up to
580
◦
C. J. Serbian Chem. Soc., 61 (1996), 253–266.
13. E. R. Altwicker and R. K. N. V. Konduri. Hydrodynamic aspects of spouted beds at elevated
temperatures. Combustion Sci. and Tech., 87 (1992), 173–197.
14. R. Clift, J. R. Grace, and W. E. Weber. Bubbles, Drops, and Particles (New York: Academic
Press, 1978), p. 114.
15. B. Thorley, J. B. Saunby, K. B. Mathur, and G. L. Osberg. An analysis of air and solid flow
in a spouted wheat bed. Can. J. Chem. Eng., 37 (1959), 184–192.
16. W. Du, X. Bi, and N. Epstein. Exploring a non-dimensional varying exponent equation relating
minimum spouting velocity to maximum spoutable bed depth. Can. J. Chem. Eng., 87 (2009),
157–162.
17. A. G. Fane and R. A. Mitchell. Minimum spouting velocity of scaled-up beds. Can. J. Chem.
Eng., 62 (1984), 437–439.
18. Y. L. He, C. J. Lim, and J. R. Grace. Spouted bed and spout-fluid bed behaviour in a column
of diameter 0.91 m. Can. J. Chem. Eng., 70 (1992), 848–857.
19. G. A. Lefroy and J. F. Davidson. The mechanics of spouted beds. Trans. Instn Chem. Engrs.,
47 (1969), T120–T128.
20. S. Ergun. Fluid flow through packed columns. Chem. Eng. Progr., 48:2 (1952), 89–94.
21. C. Y. Wen and Y. H. Yu. A generalized method of predicting the minimum fluidization
velocity. AIChE J., 12 (1966), 610–612.
22. G. S. McNab and J. Bridgwater. Spouted beds – estimation of spouting pressure drop and the
particle size for deepest bed. In Proceedings of the European Congress on Particle Technology
(Nuremberg, Germany, 1977), 17 pages.
23. H. Littman, M. H. Morgan III, D. V. Vukovi
´
c, F. K. Zdanski, and Z. B. Grbav
ˇ
ci
´
c. A theory
for predicting the maximum spoutable bed height in a s pouted bed. Can. J. Chem Eng., 55
(1977), 497–501.
24. S. W. M. Wu, C. J. Lim, and N. Epstein. Hydrodynamics of spouted beds at elevated temper-
atures. Chem. Eng. Commun., 62 (1987), 251–268.
25. M. A. Malek and B. C.-Y. Lu. Pressure drop and spoutable bed height in spouted beds. Ind.
Eng. Chem. Process Des. Dev., 4 (1965), 123–128.
26. M. H. Morgan III, H. Littman, and B. Sastri. Jet penetration and pressure drops in water
spouted beds. Can. J. Chem. Eng., 66 (1988), 735–739.
27. Z. B. Grbav
ˇ
ci
´
c, D. V. Vukovi
´
c, F. K. Zdanski, and H. Littman. Fluid flow pattern, minimum
spouting velocity and pressure drop in spouted beds. Can. J. Chem. Eng., 54
(1976), 33–42.
28. T. Mamuro and H. Hattori. Flow pattern of fluid in spouted beds. J. Chem. Eng. Japan, 1
(1968), 1–5.
29. R. L. Brown and J. C. Richards. Principles of Powder Mechanics (Oxford, UK: Pergamon
Press, 1970), p. 70.
30. A. E. Scheidegger. The Physics of Flow through Porous Media,3rded.(Toronto:Univ.of
Toronto Press, 1974), p. 155.
31. N. Epstein, C. J. Lim, and K. B. Mathur. Data and models for flow distribution and pressure
drop in spouted beds. Can J. Chem. Eng., 56 (1978), 436–447.