
Scaleup, slot-rectangular, and multiple spouting 295
19. R. B
´
ettega,R.G.Corr
ˆ
ea, and J. T. Freire. Scale-up study of spouted beds using computational
fluid dynamics. Can. J. Chem. Eng., 87 (2009), 193–203.
20. P. A. Shirvanian and J. M. Calo. Hydrodynamic scaling of a rectangular spouted vessel with
a draft duct. Chem. Eng. J., 103 (2004), 29–34.
21. H. Lu, Y. He, W. Liu, D. Gidaspow, and J. Bouillard. Computer simulations of gas-solid flow
in spouted beds using kinetic-frictional stress model of granular flow. Chem. Eng. Sci ., 59
(2004), 865–878.
22. W. Du, X. J. Bao, J. Xu, and W. S. Wei. Computational fluid dynamics modeling of spouted
bed. Chem.Eng.Sci., 61 (2006), 4558–4570.
23. J. Xu, Y. Je, W. S. Wei, X. J. Bao, and W. Du. Scaling relationship of gas-solid spouted beds.
In Fluidization XII, ed. X. T. Bi, F. Berruti, and T. Pugsley (Brooklyn, NY: Engineering
Conference International, 2007), pp. 537–544.
24. W. Du, J. Xu, Y. Ji, W. S. Wei, and X. J. Bao. Scale-up relationships of spouted beds by solid
stress analyses. Powder Technol., 192 (2009), 273–278.
25. Q. C. Wang, K. Zhang, S. Brandani, and J. C. Jiang. Scale-up strategy for the jetting flu-
idized bed using a CFD model based on two-fluid theory. Can. J. Chem. Eng., 87 (2009),
204–210.
26. A. S. Mujumdar. Spouted bed technology – a brief review. In Drying ’84, ed. A. S. Mujumdar
(New York: Hemisphere, 1984), pp. 151–157.
27. M. L. Passos, A. S. Mujumdar, and V. S. G. Raghavan. Prediction of the maximum spoutable
bed height in two-dimensional spouted beds. Powder Technol., 74 (1993), 97–105.
28. M. I. Kalwar, G. S. V. Raghavan, and A. S. Mujumdar. Circulation of particles in two-
dimensional spouted beds with draft plates. Powder Technol., 77 (1993), 233–242.
29. L. A. P. Freitas, O. M. Dogan, C. J. Lim, J. R. Grace, and B. Luo. Hydrodynamics and stability
of slot-rectangular spouted beds. II. Increasing bed thickness. Chem. Eng. Comm., 181 (2000),
243–258.
30. Z. W. Chen. Hydrodynamics, stability and scale-up of slot-rectangular spouted beds. Ph.D.
thesis, University of British Columbia (2007).
31. X. L. Zhao, S. Q. Li, G. Q. Liu, Q. Song, and Q. Yan. Flow patterns of solids in a two-
dimensional spouted bed with draft plates: PIV measurement and DEM simulations. Powder
Technol., 183 (2008), 79–87.
32. O. M. Dogan, L. A. P. Freitas, C. J. Lim, J. R. Grace, and B. Luo. Hydrodynamics and stability
of slot-rectangular spouted beds. I. Thin bed. Chem. Eng. Comm., 181 (2000), 225–242.
33. S. K. Foong, R. K. Barton, and J. S. Ratcliffe. Characteristics of multiple spouted beds. Mech.
and Chem. Eng., Trans. Instn. Engrs. Aust., 11 (1975), 7–12.
34. D. V. R. Murthy and P. N. Singh. Minimum spouting velocity in multiple spouted beds.
Can. J. Chem. Eng., 72 (1994), 235–239.
35. C. Beltramo, G. Rovero, and G. Cavagli
`
a. Hydrodynamic and thermal experimentation on
square-based spouted beds for polymer upgrading and unit scale-up.
Can. J. Chem. Eng., 87
(2009), 394–402.
36. D. O. Albina. Emissions from multiple-spouted and spout-fluid fluidized beds using rice husks
as fuel. Renewable Energy, 31 (2006), 2152–2163.
37. B. Taha and A. Koniuta. Hydrodynamics and segregation from the Cerchar FBC fluidization
grid. Fluidization VI Poster Session, Banff, Alberta, Canada, 1999, 1–5.
38. C. C. Huang and C. S. Chyang. Multiple spouts in a two-dimensional bed with a perforated-
plate distributor. J. Chem. Eng. Japan, 26 (1993), 607–614.