NITRIC OXIDE REGULATION OF THE PREIMPLANTATION EMBRYO
for expression and transcriptional selectivity. Exp Cell Res 1992;
201(2): 284–91.
25. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN. The transi-
tion from maternal to embryonic control in the 2-cell mouse embryo.
EMBO J 1982; 1(6): 681–6.
26. Jarrell VL, Day BN, Prather RS. The transition from maternal to
zygotic control of development occurs during the 4-cell stage in the
domestic pig, Sus scrofa: quantitative and qualitative aspects of
protein synthesis. Biol Reprod 1991; 44(1): 62–8.
27. Memili E,Dominko T, First NL. Onset of transcription in bovine oocytes
and preimplantation embryos. Mol Reprod Dev 1998; 51(1): 36–41.
28. Zernicka-Goetz M. Activation of embryonic genes during preimplan-
tation rat development. Mol Reprod Dev 1994; 38(1): 30–5.
29. Pines J. Cyclins and cyclin-dependent kinases: a biochemical view.
Biochem J 1995; 308 (Pt 3): 697–711.
30. Morgan DO. Principles of CDK regulation. Nature 1995; 374(6518):
131–4.
31. Smits VA, Medema RH. Checking out the G(2)/M transition. Biochim
Biophys Acta 2001; 1519(1-2): 1–12.
32. Ma T, Van Tine BA, Wei Y et al. Cell cycle-regulated phosphorylation
of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone
gene transcription. Genes Dev 2000; 14(18): 2298–313.
33. Guo K, Andres V, Walsh K. Nitric oxide-induced downregulation of
Cdk2 activity and cyclin A gene transcription in vascular smooth
muscle cells. Circulation 1998; 97(20): 2066–72.
34. Nigg EA. Cyclin-dependent protein kinases: key regulators of the
eukaryotic cell cycle. Bioessays 1995; 17(6): 471–80.
35. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order
of cell cycle events. Science 1989; 246(4930): 629–34.
36. Hogan B, Constantini, F, Lacy E. Manipulating the Mouse Embryo: A
Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Laboratory,
1986.
37. Brinster RL. Nutrition and metabolism of the ovum, zygote, and
blastocyst. Washington, DC: American Physiological Society, 1973.
38. Whitten WK. Nutrition Requirements for the Culture of Preimp-
lantation Embryos in vitro. Adv Biosci 1971; 6: 129-139.
39. Novaro V, Rettori V, Gonzalez ET et al. Interaction between uterine
PGE and PGF2 alpha production and the nitridergic system during
embryonic implantation in the rat. Prostaglandins 1996; 51(6): 363–76.
40. Sengoku K, Takuma N, Horikawa M et al. Requirement of nitric oxide
for murine oocyte maturation, embryo development, and trophoblast
outgrowth in vitro. Mol Reprod Dev 2001; 58(3): 262–8.
41. Chen HW, Jiang WS, Tzeng CR. Nitric oxide as a regulator in pre-
implantation embryo development and apoptosis. Fertil Steril 2001;
75(6): 1163–71.
42. Nishikimi A, Matsukawa T, Hoshino K et al. Localization of nitric
oxide synthase activity in unfertilized oocytes and fertilized embryos
during preimplantation development in mice. Reproduction 2001;
122(6): 957–63.
43. Orsi NM. Embryotoxicity of the nitric oxide donor sodium nitroprus-
side in preimplantation bovine embryos in vitro. Anim Reprod Sci
2006; 91(3–4): 225–36.
44. Tranguch S, Steuerwald N, Huet-Hudson YM. Nitric oxide synthase
production and nitric oxide regulation of preimplantation embryo
development. Biol Reprod 2003; 68(5): 1538–44.
45. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a
bioregulator of apoptosis. Biochem Biophys Res Commun 2001;
282(5): 1075–9.
46. Nguyen T, Brunson D, Crespi CL et al. DNA damage and mutation in
human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA
1992; 89(7): 3030–4.
47. Dinerman JL, Lowenstein CJ, Snyder SH. Molecular mechanisms of
nitric oxide regulation. Potential relevance to cardiovascular disease.
Circ Res 1993; 73(2): 217–22.
48. Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: the
NO-cyclic GMP signal transduction system. Adv Pharmacol 1994; 26:
19–33.
49. Nunokawa Y, Tanaka S. Interferon-gamma inhibits proliferation of rat
vascular smooth muscle cells by nitric oxide generation. Biochem
Biophys Res Commun 1992; 188(1): 409–15.
50. Kawahara K, Gotoh T, Oyadomari S et al. Nitric oxide inhibits the pro-
liferation of murine microglial MG5 cells by a mechanism involving
p21 but independent of p53 and cyclic guanosine monophosphate.
Neurosci Lett 2001; 310(2-3): 89–92.
51. Denham S, Rowland IJ. Inhibition of the reactive proliferation
of lymphocytes by activated macrophages: the role of nitric oxide.
Clin Exp Immunol 1992; 87(1): 157–62.
52. Nisoli E, Clementi E, Tonello C et al. Effects of nitric oxide on prolif-
eration and differentiation of rat brown adipocytes in primary
cultures. Br J Pharmacol 1998; 125(4): 888–94.
53. Buga GM, Wei LH, Bauer PM, Fukuto JM, Ignarro LJ. NG-hydroxy-L-
arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by
distinct mechanisms. Am J Physiol 1998; 275(4 Pt 2): R1256–64.
54. Pervin S, Singh R, Chaudhuri G. Nitric oxide-induced cytostasis and
cell cycle arrest of a human breast cancer cell line (MDA-MB-231):
potential role of cyclin D1. Proc Natl Acad Sci USA 2001; 98(6):
3583–8.
55. Hajri A, Metzger E, Vallat F et al. Role of nitric oxide in pancreatic
tumour growth: in vivo and in vitro studies. Br J Cancer 1998; 78(7):
841–9.
56. Ulibarri JA, Mozdziak PE, Schultz E, Cook C, Best TM. Nitric oxide
donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine,
stimulate myoblast proliferation in vitro. In Vitro Cell Dev Biol Anim
1999; 35(4): 215–8.
57. Du M, Islam MM, Lin L et al. Promotion of proliferation of murine
BALB/C3T3 fibroblasts mediated by nitric oxide at lower concentra-
tions. Biochem Mol Biol Int 1997; 41(3): 625–31.
58. Luczak K, Balcerczyk A, Soszynski M, Bartosz G. Low concentration of
oxidant and nitric oxide donors stimulate proliferation of human
endothelial cells in vitro. Cell Biol Int 2004; 28(6): 483–6.
59. Sauzeau V, Rolli-Derkinderen M, Marionneau C, Loirand G, Pacaud P.
RhoA expression is controlled by nitric oxide through cGMP-dependent
protein kinase activation. J Biol Chem 2003; 278(11): 9472–80.
60. Katsuyama K, Shichiri M, Marumo F, Hirata Y. NO inhibits cytokine-
induced iNOS expression and NF-kappaB activation by interfering
with phosphorylation and degradation of IkappaB-alpha. Arterioscler
Thromb Vasc Biol 1998; 18(11): 1796–802.
61. Fiedler B, Lohmann SM, Smolenski A et al. Inhibition of calcineurin-
NFAT hypertrophy signaling by cGMP-dependent protein kinase
type I in cardiac myocytes. Proc Natl Acad Sci USA 2002; 99(17):
11363–8.
62. Pilz RB, Suhasini M, Idriss S, Meinkoth JL, Boss GR. Nitric oxide and
cGMP analogs activate transcription from AP-1-responsive promoters
in mammalian cells. FASEB J 1995; 9(7): 552–8.
63. Thiriet N, Esteve L, Aunis D, Zwiller J. Immediate early gene induction
by natriuretic peptides in PC12 phaeochromocytoma and C6 glioma
cells. Neuroreport 1997; 8(2): 399–402.
64. Sharma RV, Tan E, Fang S, Gurjar MV, Bhalla RC. NOS gene transfer
inhibits expression of cell cycle regulatory molecules in vascular
smooth muscle cells. Am J Physiol 1999; 276(5 Pt 2): H1450–9.
65. Fukumoto S, Koyama H, Hosoi M et al. Distinct role of cAMP and
cGMP in the cell cycle control of vascular smooth muscle cells: cGMP