STOCHASTIC REGRESSORS AND MEASUREMENT ERRORS
20
family possessed a library card, 0 otherwise, when the respondent was 14. After this we give the
command "
hausman, save
". We then run the corresponding OLS regression and follow with the
command "
hausman, constant sigmamore
". This produces the following output:
. ivreg LGEARN ASVABC MALE ETHBLACK ETHHISP (S=SM SF SIBLINGS LIBRARY)
Instrumental variables (2SLS) regression
Source | SS df MS Number of obs = 570
---------+------------------------------ F( 5, 564) = 23.49
Model | 29.1540126 5 5.83080252 Prob > F = 0.0000
Residual | 124.64788 564 .22100688 R-squared = 0.1896
---------+------------------------------ Adj R-squared = 0.1824
Total | 153.801893 569 .270302096 Root MSE = .47011
------------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------
S | .1026815 .0381431 2.692 0.007 .0277615 .1776014
ASVABC | .0025508 .0067323 0.379 0.705 -.0106727 .0157743
MALE | .2280404 .0422514 5.397 0.000 .145051 .3110298
ETHBLACK | -.15289 .0882356 -1.733 0.084 -.3262005 .0204204
ETHHISP | .0463734 .085714 0.541 0.589 -.1219842 .214731
_cons | .7939315 .2347929 3.381 0.001 .3327562 1.255107
------------------------------------------------------------------------------
Instrumented: S
Instruments: ASVABC MALE ETHBLACK ETHHISP SM SF SIBLINGS LIBRARY
------------------------------------------------------------------------------
. hausman, save
. reg LGEARN S ASVABC MALE ETHBLACK ETHHISP
Source | SS df MS Number of obs = 570
---------+------------------------------ F( 5, 564) = 30.63
Model | 32.8416113 5 6.56832227 Prob > F = 0.0000
Residual | 120.960281 564 .214468584 R-squared = 0.2135
---------+------------------------------ Adj R-squared = 0.2066
Total | 153.801893 569 .270302096 Root MSE = .46311
------------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------
S | .0618848 .0098386 6.290 0.000 .04256 .0812097
ASVABC | .0093287 .0027721 3.365 0.001 .0038838 .0147737
MALE | .2130222 .0394229 5.404 0.000 .1355886 .2904557
ETHBLACK | -.1019355 .0741871 -1.374 0.170 -.2476523 .0437813
ETHHISP | .0537519 .0841815 0.639 0.523 -.1115956 .2190993
_cons | 1.009459 .1295912 7.790 0.000 .7549185 1.263999
------------------------------------------------------------------------------
. hausman, constant sigmamore
---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| Prior Current Difference S.E.
---------+-------------------------------------------------------------
S | .1026815 .0618848 .0407967 .0362637
ASVABC | .0025508 .0093287 -.0067779 .0060248
MALE | .2280404 .2130222 .0150182 .0133495
ETHBLACK | -.15289 -.1019355 -.0509546 .045293
ETHHISP | .0463734 .0537519 -.0073784 .0065586
_cons | .7939315 1.009459 -.2155273 .1915801
---------+-------------------------------------------------------------
b = less efficient estimates obtained previously from ivreg.
B = more efficient estimates obtained from regress.