References 281
324. Morales, J.: Generalized recurrence relation for the calculation of two-center matrix ele-
ments. Phys. Rev. A 36, 4101–4103 (1987)
325. Alves, N.A., Drigo Filho, E.: The factorisation method and supersymmetry. J. Phys. A, Math.
Gen. 21, 3215 (1988)
326. Yang, X.L., Guo, S.H., Chan, F.T., Wong, K.W., Ching, W.Y.: Analytic solution of a two-
dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 43, 1186–1196 (1991)
327. Guo, S.H., Yang, X.L., Chan, F.T., Wong, K.W., Ching, W.Y.: Analytic solution of a two-
dimensional hydrogen atom. II. Relativistic theory. Phys. Rev. A 43, 1197–1205 (1991)
328. Müller-Kirsten, H.J.W., Bose, S.K.: Solution of the wave equation for the logarithmic poten-
tial with application to particle spectroscopy. J. Math. Phys. 20, 2471 (1979)
329. Huffaker, J.N., Dwivedi, P.H.: Diatomic molecules as perturbed Morse oscillators. IV.
Franck-Condon factors for very high J .J.Chem.Phys.68, 1303 (1978)
330. Chakrabarti, B., Das, T.K.: Quality of the supersymmetric WKB quantization condition for
non-shape-invariant potentials. Phys. Rev. A 60, 104–111 (1999)
331. Dunham, J.L.: The Wentzel-Brillouin-Kramers method of solving the wave equation. Phys.
Rev. 41, 713–720 (1932)
332. Krieger, J.B., Rosenzweig, C.: Application of a higher-order WKB approximation to radial
problems. Phys. Rev. 164, 171–173 (1967)
333. Yi, H.S., Lee, H.R., Sohn, K.S.: Semiclassical quantum theory and its applications in two
dimensions by conformal mapping. Phys. Rev. A 49, 3277–3282 (1994)
334. Morehead, J.J.: Asymptotics of radial wave equations. J. Math. Phys. 36, 5431 (1995)
335. Young, L.A., Uhlenbeck, G.E.: On the Wentzel-Brillouin-Kramers approximate solution of
the wave equation. Phys. Rev. 36, 1154–1167 (1930)
336. Langer, R.E.: On the connection formulas and the solutions of the wave equation. Phys. Rev.
51, 669–676 (1937)
337. Hur, J., Lee, C.: Semiclassical theory for two-anyon system. Ann. Phys. 305, 28–44 (2003)
338. Beckel, C., Nakhleh, J.: Application of the second-order WBK approximation to radial prob-
lems. J. Chem. Phys. 39, 94 (1963)
339. Adhikari, R., Dutt, R., Khare, A., Sukhatme, U.P.: Higher-order WKB approximations in
supersymmetric quantum mechanics. Phys. Rev. A 38, 1679–1686 (1988)
340. Moritz, M.J., Eltschka, C., Friedrich, H.: Threshold properties of attractive and repulsive
1/r
2
potentials. Phys. Rev. A 63, 042102 (2001)
341. Friedrich, H., Trost, J.: Accurate WKB wavefunctions for weakly attractive inverse-square
potentials. Phys. Rev. A 59, 1683–1686 (1999)
342. Friedrich, H., Trost, J.: Phase loss in WKB waves due to reflection by a potential. Phys. Rev.
Lett. 76, 4869–4873 (1996)
343. Friedrich, H., Trost, J.: Nonintegral Maslov indices. Phys. Rev. A 54, 1136–1145 (1996)
344. Hainz, J., Grabert, H.: Centrifugal terms in the WKB approximation and semiclassical quan-
tization of hydrogen. Phys. Rev. A 60, 1698–1701 (1999)
345. Pack, R.T.: On improved WKB (uniform asymptotic) quantum conditions, Dunham correc-
tions, the Langer modification, and RKR potentials. J. Chem. Phys. 57, 4612 (1972)
346. Howard, R.A.: Effects of the Langer transformation on the calculation of internuclear poten-
tial curves. J. Chem. Phys. 54, 4252 (1971)
347. Fröman, N., Fröman, P.O.: JWKB Approximation. North-Holland, Amsterdam (1965)
348. Ma, Z.Q., Xu, B.W.: Quantization rules for bound states of the Schrödinger equation. Int. J.
Mod. Phys. E 14, 599 (2005)
349. Ma, Z.Q., Xu, B.W.: Quantum correction in exact improved quantization rules. Europhys.
Lett. 69, 685 (2005)
350. Ma, Z.Q., Gonzalez-Cisneros, A., Xu, B.W., Dong, S.H.: Energy spectrum of the trigonomet-
ric Rosen-Morse potential using an improved quantization rule. Phys. Lett. A 371, 180–184
(2007)
351. Qiang, W.C., Dong, S.H.: Arbitrary l-state solutions of the rotating Morse potential through
the exact quantization rule method. Phys. Lett. A 363, 169–176 (2007)
352. Cao, Z.Q., Liu, Q., Shen, Q.S., Dou, X.M., Chen, Y.L.: Quantization scheme for arbitrary
one-dimensional potential wells. Phys. Rev. A 63, 054103 (2001)