xContents
5 Dressing in 2+1 dimensions................................141
5.1 Combined Darboux–Laplace transformations . . . . . . . . . . . . . . . . 142
5.1.1 Definitions .......................................142
5.1.2 Reduction constraints and reduction equations . . . . . . . . 143
5.1.3 Goursat equation, geometry, and two-dimensional
MKdV equation...................................147
5.2 Goursat and binary Goursat transformations . . . . . . . . . . . . . . . . 149
5.3 Moutardtransformation..................................152
5.4 Iterationsof Moutardtransformations......................152
5.5 Two-dimensionalKdVequation ...........................153
5.5.1 Moutardtransformations...........................154
5.5.2 Asymptotics of multikink solutions
oftwo-dimensionalKdV equation ...................154
5.6 Generalized Moutard transformation for two-dimensional
MKdVequations ........................................158
5.6.1 Definition of generalized Moutard transformation
and covariancestatement...........................158
5.6.2 Solutions of two-dimensional MKdV
(BLMP1)equations................................159
6 Applications of dressing to linear problems ................161
6.1 Generalstatements ......................................162
6.1.1 Gauge–Darboux and auto-gauge–Darboux
transformations ...................................163
6.1.2 Chains of shape-invariant superpotentials . . . . . . . . . . . . . 164
6.2 Integrablepotentialsin quantum mechanics.................166
6.2.1 Peculiarities ......................................166
6.2.2 Nonsingularpotentials .............................167
6.2.3 Coulomb potential as a representative of singular
potentials ........................................171
6.2.4 Matrixshape-invariantpotentials....................173
6.3 Zero-range potentials, dressing, and electron–molecule
scattering ..............................................174
6.3.1 ZRPs andDarboux transformations .................174
6.3.2 DressingofZRPs..................................177
6.4 Dressingin multicenter problem...........................179
6.5 Applications to X
n
and YX
n
structures....................181
6.5.1 Electron–X
n
scatteringproblem.....................182
6.5.2 Electron–YX
n
scatteringproblem ...................183
6.5.3 Dressing and Ramsauer–Taunsend minimum . . . . . . . . . . 184
6.6 Greenfunctionsinmultidimensions........................186
6.6.1 Initial problem for heat equation with
areflectionlesspotential............................186