64 3 Velocity and Acceleration Analysis
= −α
3
(0.449788 −0.3) −(−3.43639)
2
(0.0400698 −0.3),
−4.18732 + α
2
(0.0400698 −0.106066) −(−3.43639)
2
(0.449788 −0.106066)
= α
3
(0.0400698 −0.3) −(−3.43639)
2
(0.449788 −0.3).
Thus,
α
2
= −8.97883 rad/s
2
and α
3
= 22.6402 rad/s
2
.
The acceleration of C is
a
C
= α
3
×(r
C
−r
D
) −ω
2
3
(r
C
−r
D
)
=[−α
3
(y
C
−y
D
) −ω
2
3
(x
C
−x
D
)]ı +[α
3
(x
C
−x
D
) −ω
2
3
(y
C
−y
D
)]j
=[−(22.6402)(0.449788 −0.3) −(−3.43639)
2
(0.0400698 −0.3)]ı
+[(22.6402)(0.0400698 −0.3) −(−3.43639)
2
(0.449788 −0.3)]j
= −0.321767ı −7.65368 j m/s
2
.
The MATLAB commands for the angular accelerations of links 2 and 3, and the
acceleration of C are:
alpha2z = sym(’alpha2z’,’real’);
alpha3z = sym(’alpha3z’,’real’);
alpha2=[00alpha2z ]; alpha3=[00alpha3z ];
eqaC2 = aB2+cross(alpha2,rC-rB)-...
dot(Omega2,Omega2)
*
(rC-rB);
eqaC3 = aD+cross(alpha3,rC-rD)-...
dot(Omega3,Omega3)
*
(rC-rD);
eqaC = eqaC2 - eqaC3;
eqaCx = eqaC(1);
eqaCy = eqaC(2);
solaC = solve(eqaCx,eqaCy);
alpha2zs = eval(solaC.alpha2z);
alpha3zs = eval(solaC.alpha3z);
Alpha2 = [0 0 alpha2zs];
Alpha3 = [0 0 alpha3zs];
aC=aB2+cross(Alpha2,rC-rB)-dot(Omega2,Omega2)
*
(rC-rB);
Acceleration of Point E
The points E and D are on the link 3 and the acceleration of E is
a
E
= a
D
+ α
3
×r
DE
−ω
2
2
r
DE
= α
3
×(r
E
−r
D
) −ω
2
3
(r
E
−r
D
)
=[−α
3
(y
E
−y
D
) −ω
2
3
(x
E
−x
D
)]ı +[α
3
(x
E
−x
D
) −ω
2
3
(y
E
−y
D
)]j
=[−(22.6402)(0.524681 −0.3) −(−3.43639)
2
(−0.0898952 −0.3)]ı
+[(22.6402)(−0.0898952 −0.3) −(−3.43639)
2
(0.524681 −0.3)]j
= −0.48265ı −11.4805 j m/s
2
.