
3.9 Derivative Method 93
¨x
B
=
d ˙x
B
dt
= −AB
˙
φ
2
cosφ −AB
¨
φ sinφ,
¨y
B
=
d ˙y
B
dt
= −AB
˙
φ
2
sinφ + AB
¨
φ cosφ.
The angular acceleration of link 1 is
¨
φ =
˙
ω = α = 0. The numerical values for the
acceleration of B are
¨x
B
= −0.1π
2
cos45
◦
−0 = −0.697886 m/s
2
,
¨y
B
= −0.1π
2
sin45
◦
+ 0 = −0.697886 m/s
2
,
a
B
1
= a
B
2
= |a
B
1
| = |a
B
2
| =
¨x
2
B
+ ¨y
2
B
= 0.697886
√
2 m/s
2
.
The MATLAB statements for the velocity and acceleration of B
1
= B
2
are:
AB = 0.1; AC = 0.1; CD = 0.3; % (m)
phi1 = pi/4; omega = pi; alpha = 0;
xC=0;yC=0;
xA=0;yA=AC;
t = sym(’t’,’real’);
xB1=xA+AB
*
cos(sym(’phi(t)’));
yB1=yA+AB
*
sin(sym(’phi(t)’));
rB = [ xB1 yB1 0 ]; %symbolic function of phi(t)
xBn = subs(xB1,’phi(t)’,pi/4); % xB for phi(t)=pi/4
yBn = subs(yB1,’phi(t)’,pi/4); % yB for phi(t)=pi/4
rBn = subs(rB,’phi(t)’,pi/4); % rB for phi(t)=pi/4
fprintf(’rB = [ %g, %g, %g ] (m)\n’, rBn)
vB = diff(rB,t); %differentiates rB with respect to t
%list for symbolical variables phi’’,phi’,phi
slist={diff(’phi(t)’,t,2),diff(’phi(t)’,t),’phi(t)’};
%list for numerical values of phi’’(t),phi’(t),phi(t)
nlist={alpha,omega,phi1}; %numerical values for slist
vBn = double(subs(vB,slist,nlist));
fprintf(’vB1 = vB2 = [ %g, %g, %g ] (m/s)\n’, vBn)
fprintf(’|vB1| = |vB2| = %g (m/s)\n’, norm(vBn))
%acceleration of B1=B2
aB = diff(vB,t); %differentiates vB with respect to t
aBn = double(subs(aB,slist,nlist));
fprintf(’aB1 = aB2 = [ %g, %g, %g ] (m/sˆ2)\n’, aBn)
fprintf(’|aB1| = |aB2| = %g (m/sˆ2)\n’, norm(aBn))
The points B and C are located on the same straight line BCD:
y
B
(t) −y
C
−[x
B
(t) −x
C
] tanφ
3
(t)=0. (3.89)