114
Chapter 6: Some Extremal Problems in Martingale Theory
References
[1] R. Baiiuelos and A. Lindeman, A martingale study of the Beurling-Ahifors
transform in R", J. Funct. Anal. 145 (1997), 224-265.
[2] R. Banuelos and G. Wang, Sharp inequalities for martingales with appli-
cations to the Beurling-Ahifors and Riesz transforms, Duke Math. J. 30
(1995), 575-600.
[3] D. L. Burkholder, Boundary value problems and sharp inequalities for
martingale transforms, Ann. Probab. 12 (1984), 647-702.
[4] ,
Sharp inequalities for martingales and stochastic integrals, Col-
loque Paul Levy (Palaiseau, 1987), Asterisque 157-158 (1988), 75-94.
[5] ,
Differential subordination of harmonic functions and martin-
gales, Harmonic Analysis and Partial Differential Equations (El Escorial,
1987), Lecture Notes in Mathematics 1384 (1989), 1-23.
[6] ,
Explorations in martingale theory and its applications, Ecole
d'Ete de Probabilites de Saint-Flour XIX-1989, Lecture Notes in Mathe-
matics 1464 (1991), 1-66.
[7] ,
Strong differential subordination and stochastic integration, Ann.
Probab. 22 (1994), 995-1025.
[8] ,
Sharp norm comparison of martingale maximal functions and
stochastic integrals, Proceedings of the Norbert Wiener Centenary Congress,
1994 (edited by V. Mandrekar and P. R. Masani), Proceedings of Symposia
in Applied Mathematics 52 (1997), 343-358.
[9] C. Choi, A submartingale inequality, Proc. Amer. Math. Soc. 124 (1996),
2549-2553.
[10] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer,
1989.
[11] W. Hammack, Sharp maximal inequalities for stochastic integrals in
which the integrator is a submartingale, Proc. Amer. Math. Soc. 124
(1996),931-938.
[12] T. Iwaniec, private communication, June 1996.
[13] T. Iwaniec and G. Martin, Riesz transforms and related singular integrals,
J. reine angew. Math. 473 (1996), 25-57.