September 27, 2004 16:46 WSPC/Book Trim Size for 9.75in x 6.5in GlobalAttractors/chapter 14
Bibliography 497
1966.
[271] Pliss V. A., Integral Sets of Periodic Systems of Differential Equations. Nauka,
Moscow, 1977.
[272] Reissig R., Sansone G. and Conti R., Qualitative Theorie Nichthlinearer Dif-
ferentialgleichungen. Edizioni Cremonese, Roma, 1963.
[273] Rouche N., Habets P. and Laloy M., Stability Theory by Lyapunov’s Direct
Method. Springer–Verlag, New York–Heidelberg–Berlin, 1977.
[274] Rudin U., Functional Analysis. Mir, Moscow, 1975.
[275] Sacker R. J. and Sell G. R., Existence of Dichotomies and Invariant Splittings
for Linear Differential Systems, I. Journal of Differential Equations, 15:429–
458, 1974.
[276] Sacker R. J. and Sell G. R., Lifting Properties in Skew–Product Flows with
Applications to Differential Equations. Memoirs oft he American Math. Soc.,
v.190, Providence, R.I., 1977.
[277] Sacker R. J. and Sell G. R., Dichotomies for Linear Evoltionary Equations in
Banach Spaces. Journal of Differential Equations 1994, v.113, pp.17-67
[278] Sadovskii B. N., Limit Compact and Condensing Operators. Uspechi Matem.
Nauk, 27(1(163)):81–146, 1972.
[279] Samoilenko A. M. and Perestiuk N. A., Impulsive Differential Equations.
World Scientific Publishing Co., Inc., River Edge, NY, 1995.
[280] Samoilenko A. M., and Trofimuchiuk S. I., Unbounded Functions with Almost
Periodic Differences. Ukrainian Math. J., 43 (1991), 1409-1413.
[281] Samoilenko A. M. and Trofimuchiuk S. I., On the Space of Piecewise Con-
tinuous Almost Periodic Functions and Almost Periodic Sets on the Line.
Ukrainian Math. J.,43 (1991), 1613–1619.
[282] Saperstone S. N., Semidynamical Systems in Infinite Dimensional Spaces.
Springer-Verlag, New York-Heidelberg-Berlin 1981.
[283] Scheutzow M., Comparison of Various Concepts of a Random Atractor: A
Case Study. Technical report, Technische Universit¨at Berlin, 2000.
[284] Schmalfuß B., Backward Cocycles and Attractors of Stochastic Differen-
tial Equations. in International Seminar on Applied Mathematics–Nonlinear
Dynamics: Attractor Approximation and Global Behaviour, V. Reitmann,
T. Riedrich, and N. Koksch (eds.), TU Dresden, 1992, pp 185–192.
[285] Schmalfuß B., Attractors for the Non-Autonomous Dynamical Systems. In
K. Gr¨oger B. Fiedler and J. Sprekels, editors, Proceedings EQUADIFF99,
pages 684–690. World Scientific, 2000.
[286] Schmalfuss B., Attractors for the Non-Autonomous Navier-Stokes Equation
(to appear).
[287] Schwartz L., Analyse Math´ematique, v. 1. Hermann, 1967.
[288] Schwartz L., Analyse Math´ematique, v. 2. Hermann, 1967.
[289] Seifert G., Almost Periodic Solutions for Almost Periodic System of Ordinary