392 D. Gal’tsov
source of radiation apart from the local contribution from the particle must contain
the contribution from the perturbed background. This can be seen from the analysis
of the Bianchi identity. This second contribution is nonlocal, so the possibility to
obtain the equation of the DeWitt–Brehme type seems implausible.
For a non-geodesically moving mass the formal derivation of the reaction force
leads to putative antidamping effect. To cure this problem one has to take into
account the contribution of stresses forcing the mass to accelerate. Then in the
nonrelativistic case one derives the gravitational quadrupole Schott term, but the
derivation is nonlocal. This is another example when the (quasi)local equation of
motion with the reaction force does not exist. Here by quasilocality we mean the
possibility of the tail term.
Acknowledgements The author is grateful to the Organizing Committee for invitation and support
in Orl´eans. Useful discussions with the participants of the School on Mass and Capra conference
are acknowledged. Most of the results presented in this lecture were obtained in collaboration
with Pavel Spirin, to whom the author in indebted. The work was supported by the RFBR project
08-02-01398-a.
References
1. G. Arreaga, R. Capovilla, J. Guven, Class. Quant. Grav. 18, 5065 (2001)
2. S.M. Christensen, Phys. Rev. D 14, 2490 (1976)
3. S. Detweiler, Class. Q. Grav. 22, S681 (2005)
4. S. Detweiler, B. F. Whiting, Phys. Rev. D 67, 024025 (2003)
5. B.S. DeWitt, R.W. Brehme, Ann. Phys. (N.Y.) 9, 220 (1960)
6. C.M. DeWitt, B.S. DeWitt, Physics 1, 3 (1964)
7. P. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)
8. T. Fulton, F. Rohrlich, Ann. Phys. (N.Y.) 9, 499 (1960)
9.D.V.Gal’tsov,J.Phys.A15, 3737 (1982)
10. D.V. Galtsov, Phys. Rev. D 66, 025016 (2002)
11. D.V. Gal’tsov, P. Spirin, Grav. Cosmol. 12, 1 (2006)
12. D.V. Galtsov, P.A. Spirin, Grav. Cosmol. 13, 241 (2007)
13. D.V. Galtsov, P.A. Spirin, Radiation in odd dimensions, in preparation
14. D. Gal’tsov, P. Spirin, S. Staub, in Gravitation and Astrophysics, ed. by J.M. Nester, C.-M.
Chen, J.-P. Hsu (World Scientific, Singapore, 2006), p. 345, arXiv:gr-qc/0701004v1 (2006)
15. S.E. Gralla, R.M. Wald, Class. Q. Grav. 25, 205009 (2008)
16. J.M. Hobbs, Ann. Phys. (N.Y.) 47, 141 (1968)
17. D. Ivanenko, A. Sokolov, Sov. Phys. Doklady 36, 37 (1940); in Russian, Classical Field Theory
(Gostehizdat, Moskva, 1948); in German, Klassische feldtheorie (Akademie Verlag, Berlin,
1953)
18. B.P. Kosyakov, Theor. Math. Phys. 199, 493 (1999)
19. B.P. Kosyakov, Introduction to the Classical Theory of Particles and Fields (Springer, Berlin,
2007)
20. Y. Mino, M. Sasaki, T. Tanaka, Phys. Rev. D 55, 3457 (1997)
21. C. Morette-DeWitt, J. L. Ging, C. R. Acad. Sci. Paris 251, 1868 (1960)
22. E. Poisson, Living Rev. Rel. 7,URL:http://www.livingreviews.org/lrr-2004-6
23. F. Rohrlich, Nuovo Cimento 21, 811 (1961)
24. F. Rohrlich, Classical Charged Particles, 2nd edn. (Addison-Wesley, Reading, MA, 1965;
Redwood City, CA, 1990)