502 References
[199] G. Strang. On strong hyperbolicity. J. Math. Kyoto Univ., 6(3):397–417, 1967.
[200] R. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of
solutions of wave equations. Duke Math. J., 44(3):705–714, 1977.
[201] J. C. Strikwerda. Initial boundary value problems for incompletely parabolic sys-
tems. Comm. Pure Appl. Math., 30(6):797–822, 1977.
[202] L. Tartar. Compensated compactness and applications to partial differential equa-
tions. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV,
pages 136–212. Pitman, Boston, Mass., 1979.
[203] D. Tataru. Strichartz estimates in the hyperbolic space and global existence for the
semilinear wave equation. Trans. Amer. Math. Soc., 353(2):795–807, 2001.
[204] G. I. Taylor. The formation of a blast wave by a very intense explosion. Proc. Roy.
Soc. London. Ser. A., 201:159–174, 175–186, 1950.
[205] M. E. Taylor. Pseudo differential operators. Lecture Notes in Mathematics, Vol.
416. Springer-Verlag, Berlin, 1974.
[206] M. E. Taylor. Pseudodifferential operators and nonlinear PDE, volume 100 of
Progress in Mathematics. Birkh¨auser Boston Inc., Boston, MA, 1991.
[207] M. E. Taylor. Partial differential equations. III, volume 117 of Applied Mathe-
matical Sciences. Springer-Verlag, New York, 1997. Nonlinear equations, Corrected
reprint of the 1996 original.
[208] R. Temam. Navier–Stokes equations. Theory and numerical analysis. North-
Holland Publishing Co., Amsterdam, revised edition, 1979. With an appendix by F.
Thomasset.
[209] P. A. Thompson and K. C. Lambrakis. Negative shock waves. J. Fluid Mech.,
60:187–208, 1973.
[210] F. Tr`eves. Introduction to pseudodifferential and Fourier integral operators. Vol. 1.
Plenum Press, New York, 1980. Pseudodifferential operators, The University Series
in Mathematics.
[211] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics.
Birkh¨auser Verlag, Basel, 1983.
[212] H. Triebel. Theory of function spaces. II, volume 84 of Monographs in Mathematics.
Birkh¨auser Verlag, Basel, 1992.
[213] L. Truskinovsky. The structure of an isothermic phase jump. Dokl. Akad. Nauk
SSSR, 285:309–315, 1985.
[214] L. Truskinovsky. Kinks versus shocks. In J. E. Dunn, R. Fosdick, and M. Slemrod,
editors, Shock induced transitions and phase structures in general media, volume 52
of IMA Vol. Math. Appl., pages 185–227. Springer, New York, 1993.
[215] Ya-Guang Wang and Zhouping Xin. Stability and existence of multidimensional
subsonic phase transitions. Acta Math. Appl. Sin. Engl. Ser., 19(4):529–558, 2003.
[216] R. C. Weast and M. J. Astle, editors. CRC Handbook of Chemistry and Physics.
CRC Press Inc., Boca Raton, Florida 33431, 1980.
[217] H. F. Weinberger. Remark on the preceeding paper of Lax. Comm. Pure Appl.
Math., 11:195–196, 1958.
[218] H. Weyl. Shock waves in arbitrary fluids [Commun. Pure Appl. Math. ii (1949),
no. 2-3, 103–122]. In Classic papers in shock compression science, pages 497–519.
Springer, New York, 1998.
[219] G. B. Whitham.
Linear and nonlinear waves. John Wiley & Sons Inc., New York,
1999. Reprint of the 1974 original, A Wiley-Interscience Publication.