494 References
[36] P. G. Ciarlet. Mathematical elasticity. Vol. I. Three-dimensional elasticity. North-
Holland Publishing Co., Amsterdam, 1988.
[37] B. D. Coleman and E. H. Dill. Thermodynamic restrictions on the constitutive
equations of electromagnetic theory. Z. Angew. Math. Phys., 22:691–702, 1971.
[38] J.-F. Coulombel. Stabilit´e multidimensionnelle d’interfaces dynamiques; applica-
tion aux transitions de phase liquide-vapeur. PhD thesis,
´
Ecole normale sup´erieure
de Lyon, 2002.
[39] J.-F. Coulombel. Weak stability of non uniformly stable multidimensional shocks.
SIAM J. Math. Analysis, 34(1):142–172, 2002.
[40] J.-F. Coulombel. Stability of multidimensional undercompressive shock waves.
Interfaces Free Bound., 5(4):360–390, 2003.
[41] J.-F. Coulombel. Weakly stable multidimensional shocks. Ann. Inst. H. Poincar´e
(Analyse non lin´eaire), 21:401–443, 2004.
[42] J.-F. Coulombel, S. Benzoni-Gavage, and D. Serre. Note on a paper
‘Shock wave instability and the carbuncle phenomenon: same intrinsic
origin?’ [J. Fluid Mech. 417 (2000), 237–263], by J.-Ch. Robinet, J.
Gressier, G. Casalis and J.-M. Moschetta. J. Fluid Mech., 469:401–405,
2002.
[43] J.-F. Coulombel and P. Secchi. The stability of compressible vortex sheets in two
space dimensions. Indiana Univ. Math. J., 53:941–1012, 2004.
[44] J.-F. Coulombel and P. Secchi. Nonlinear compressible vortex sheets in two space
dimensions. Preprint, 2005.
[45] C. M. Dafermos. Quasilinear hyperbolic systems with involutions. Arch. Rational
Mech. Anal., 94(4):373–389, 1986.
[46] C. M. Dafermos. Hyperbolic conservation laws in continuum physics. Springer-
Verlag, Berlin, 2000.
[47] S. R. de Groot and P. Mazur. Nonequilibrium thermodynamics. Dover Publications
Inc., New York, 1984. Reprint of the 1962 original.
[48] S. Demoulini, D. Stuart, and A. Tzavaras. A variational approximation scheme for
three-dimensional elastodynamics with polyconvex energy. Arch. Rat. Mech. Anal.,
157:325–344, 2001.
[49] R. J. DiPerna. Convergence of approximate solutions to conservation laws. Arch.
Rat. Mech. Anal., 82:27–70, 1983.
[50] R. J. DiPerna. Convergence of the viscosity method for isentropic gas dynamics.
Comm. Math. Phys., 91(1):1–30, 1983.
[51] N. Dunford and J. T. Schwartz. Linear operators. Part I. General theory. John
Wiley & Sons Inc., New York, 1988. With the assistance of William G. Bade and
Robert G. Bartle, Reprint of the 1958 original.
[52] S. P. D
yakov. On the stability of shock waves.
ˇ
Z. Eksper. Teoret. Fiz., 27:288–295,
1954.
[53] J. J. Erpenbeck. Stability of step shocks. Phys. Fluids, 5:1181–1187, 1962.
[54] Haitao Fan and M. Slemrod. Dynamic flows with liquid/vapor phase transitions.
In S. Friedlander and D. Serre, editors, Handbook of mathematical fluid dynamics,
Vol. I, pages 373–420. North-Holland, Amsterdam, 2002.
[55] E. Feireisl, A. Novotn´y, and H. Petzeltov´a. On the existence of globally defined
weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech., 3(4):358–392,
2001.