Chapter36 •
Tangent
Plane and Differential Approximation
dD
dt
=2-+-
D
t'
225
If the relative error dD/D in the diameter measurement is twice the relative error d
t/
t in the length
measurement, then
dW
dt
W=5,'
If dW/Wis to be less than .01 (i.e., 1%)then
dt/tmust
be less than .002.The error in the lengthmeas-
urementmust be less than .2%,with the error in the diameterless than .4%.The error in the diameter
measurement accountsfor an error of .8% in the weightcalculation.
For
functions
u = F(x, y, z) of three
variables
the differential again
gives
a usefulap-
proximation to the
change
in the
function
for small
changes
in the
variables.
The differential
of
F(x,y, z) is
du
=
dF(x,
y, z) =
Fx(x,
y, z)dx+
Fy(x,
y, z)dy +
Fz(x,
y, z)dz
or,in the curly-dnotation,
au
au au
du =
-dx
+
-dy
+
-dz.
ax
ay
az
EXAMPLE
36.6
Let u =
xI/z4·
Findthe approximate maximumpercentageerror in the calculatedvalueof u if the meas-
ured valuesof
x, y, z are off by at most 1%.
Solution
Wecalculatethe differential:
The relativechangein
u is
du 1 2 4
- = - dx + - dy - - dz.
u x y z
If dx/x, dy/y, and dzlz are all.Ol in magnitude, and dz/z is negative so the errors add up, thendu/u= .07.
Hence 1% errors in x, y, and z can result in a 7% error in the calculatedvalue of u.
PROBLEMS
Findthe twotangentvectorst
x
and t
y
and the normalvector N at the givenpoint.Writethe equa-
tion of the tangentplane at the givenpoint.
36.1 z = x
2
+3xy (3, 1)
36.2 z = 2x +
xl
(1,2)
36.3 z =
e(x
+I) (0, 1)
36.4 z = y
10g(1
+ x
2
)
(0,2)
36.5 z = e cos y (0, 0)
36.6 z
=x
tany
+ x
2
+ y (3,0)
Find the points on the givensurfaceswhere the tangentplane is horizontal.
36.7
z=xy+x
36.8 z = x
2
+1 - 2x