
102
Understanding
Calculus
Wedeal primarily with sinx, cosx, tanx, and secx. Wehave integrationformulasfor
sin
x, cosx, and tan x, and the integralof secx is the following:
I
secxdx
=log I secx +tanx I· (18.7)
Formula(18.7) can easily be checkedby differentiating the right side:
d secx tanx +sec
2
x
- log I secx + tanx
1=------
dx secx +tanx
secx (tanx + sec
x)
=-------
(secx + tan
x)
=secx.
If you put integralsigns in front of the aboveformulasand read from down to up, you get the
usual "derivation"of formula (18.7).
The simpleu-substitution,
u =sinx, du =cosr dx, worksfor any integralof the form
I
sink
x cosx dx = Iukdu =
_1_
sin
k
+
1
x.
(18.8)
k+l
Here k can be
any
numberexcept
-1;
thatis, k can be positiveor negative, fractionor integer.
The u-substitution of (18.8) is so simple that the intermediate formula
f ukdu need not be
writtendown. The following integralsare examplesof (18.8):
Isin
2
x cosx dx =
~
sirr' x;
I
.Jsinx
cos x dx =
~
sin~
x;
I
cosx
1 . 4
--
dx =
--
SIn-
x.
sirr' x 4
The same trick works, of course, if the sines and cosines are interchanged; in this case
u = cosx, du = - sinx dx, and we have
f
cos
k
xsinxdx
=
fuk(-l)dU
=
__
I_COSk+l
x. (18.9)
k+l
The following are examplesof (18.9):
I
cos~
x sin x dx =
-~
cos~
x;
f
COS-2
x sinx dx =
_1_
= secx;
cosx
Icos" x sin x dx =
-~
cos"x.
The following example illustrates a simple variationof the J
sink
x cosx dy integrals.
The trick dependson cos
x occurringto an odd
power.
Isin
2
x cos
3
x dx =Isin
2
x cos
2
x cos x dx
=Isin
2
x(l
- sin
2
x) cos r dx
=fsin
2
x cos x dx - fsin" x cos x dx
1 . 3
I.
5
= -
SIn
x - -
SIn
x.
3 5