Jacobsen, A. Pfaltz,and H. Yamamoto),
Springer, Heidelberg, pp. 621–648.
9 Zhang, W., Basak, A., Kosugi, Y.,
Hoshino, Y., and Yamamoto, H. (2005)
Angew. Chem. Int. Ed., 44, 4389.
10 Notari, B. (1993) Catal. Today, 18, 163.
11 Matsumoto, K., Sawada, Y., Saito, B.,
Sakai, K., and Katsuki, T. (2005) Angew.
Chem. Int. Ed., 44, 4935.
12 Sawada, Y., Matsumoto, K., Kondo, S.,
Watanabe, H., Ozawa, T., Suzuki, K.,
Saito, B., and Katsuki, T. (2006) Angew.
Chem. Int. Ed., 45, 3478.
13 Matsumoto, K., Sawada, Y., and Katsuki,
T. (2006) Synlett, 3545.
14 Nakagawa, Y., Kamata, K., Kotani, M.,
Yamaguchi, K., and Mizuno, N. (2005)
Angew. Chem. Int. Ed., 44, 5136.
15 Mizuno, N., Nakagawa, Y., and
Yamaguchi, K. (2006) J. Mol. Catal. A,
251, 286.
16 Nakagawa, Y.and Mizuno, N. (2007)
Inorg. Chem., 46, 1727.
17 Sharpless, K.B.and Verhoeven, T.R.
(1979) Aldrichmica. Acta, 12, 63.
18 Thiel, W.R. (1998) Transition Metals for
Organic Synthesis, 2 (eds M. Bellerand C.
Bolm), Wiley-VCH, Weinheim,
pp. 290–300.
19 Payne, G.B.and Williams, P.H. (1959)
J. Org. Chem., 24, 54.
20 Venturello, C., Alneri, E., and Ricci, M.
(1983) J. Org. Chem., 48, 3831.
21 Venturello, C.and DAloisio, R. (1988)
J. Org. Chem., 53, 1553.
22 Venturello, C., DAloisio, R., Bart, J.C.J.,
and Ricci, M. (1985) J. Mol. Catal.,
32, 107.
23 Sato, K., Aoki, M., Ogawa, M.,
Hashimoto, T., and Noyori, R. (1996)
J. Org. Chem., 61, 8310.
24 Sato, K., Aoki, M., Ogawa, M.,
Hashimoto, T., Paynella, D., and Noyori,
R. (1997) Bull. Chem. Soc. Jpn.,
70, 905.
25 Sato, K., Aoki, M., and Noyori, R. (1998)
Science, 281, 1646.
26 Villa de P., A.L., Sels, B.F., De Vos, D.E.,
and Jacobs, P.A. (1999) J. Org. Chem.,
64, 7267.
27 Kamata, K., Yonehara, K., Sumida, Y.,
Yamaguchi, K., Hikichi, S., and Mizuno,
N. (2003) Science, 300, 964.
28 Kamata, K., Kotani, M., Yamaguchi, K.,
Hikichi, S., and Mizuno, M. (2007)
Chem. Eur. J., 13, 639.
29 Bortolini, O., Di Furia, F., Modena, G.,
and Seraglia, R. (1985) J. Org. Chem.,
50, 2688.
30 Wahl, G., Kleinhenz, D., Schorm, A.,
Sundermeyer, J., Stowasser, R.,
Rummey, C., Bringmann, G., Fickert, C.,
and Kiefer, W. (1999) Chem. Eur. J.,
5, 3237.
31 Maiti, S.K., Dinda, S., and Bhattacharyya,
R. (2008) Tetrahedron Lett., 49, 6205.
32 Sels, B.F., De Vos, D.E., and Jacobs, P.A.
(1996) Tetrahedron Lett., 37, 8557.
33 For a comprehensive summary, see
Gelbard, G. (2000) C. R. Chim., 3, 757.
34 Hoegaerts, D., Sels, B.F., De Vos, D.E.,
Verpoort, F., and Jacobs, P.A. (2000)
Catal. Today, 60, 209.
35 Zuwei, X., Ning, Z., Yu, S., and Kunlan, L.
(2001) Science, 292, 1139.
36 Battioni, P., Renaud, J.-P., Bartoli, J.F.,
Reina-Artiles, M., Fort, M., and
Mansuy, D. (1988) J. Am. Chem. Soc.,
110, 8462.
37 Anelli, P.L., Banfi, L., Legramandi, F.,
Montanari, F., Pozzi, G., and
Quici, S. (1993) J. Chem. Soc., Perkin
Trans. 1, 1345.
38 Zhang, W., Loebach, J.L., Wilson, S.R.,
and Jacobsen, E.N. (1990) J. Am. Chem.
Soc., 112, 2801.
39 Irie, R., Noda, K., Ito, Y., Matsumoto, N.,
and Katsuki, T. (1990) Tetrahedron Lett.,
31, 7345.
40 Jacobsen, E.N.and Wu, M.H. (1999)
Comprehensive Asymmetric Catalysis, II
(eds E.N. Jacobsen, A. Pfaltz,and H.
Yamamoto), Springer, Heidelberg, pp.
649–677.
41 Srinivasan, K., Michaud, P., and Kochi,
J.K. (1986) J. Am. Chem. Soc., 108, 2309.
42 Berkessel, A., Frauenkron, M.,
Schwenkreis, T., Steinmetz, A., Baum,
G., and Fenske, D. (1996) J. Mol. Catal. A:
Chem., 113, 321.
43 Irie, R., Hosoya, N., and Katsuki, T. (1994)
Synlett, 255.
44 Pietik
€
ainen, P. (1998) Tetrahedron, 54,
4319.
45 Pietik
€
ainen, P. (2001) J. Mol. Catal. A:
Chem., 165, 73.
References
j
81