Файлы
Обратная связь
Для правообладателей
Найти
Анищенко В.С. Нелинейные эффекты в хаотических и стохастических системах
Файлы
Академическая и специальная литература
Математика
Нелинейная динамика
Назад
Скачать
Подождите немного. Документ загружается.
˙
x
=
αx
−
β
x
3
+
√
2
D
ξ
(
t
)
+
A
cos(
Ω
t
+
ϕ
0
)
.
A
Ω
ϕ
0
ϕ
0
α,
β
>
0
,
ϕ
0
=
0
A
w
(
t
)
=
x
(
t
)
+
i
y
(
t
)
y
(
t
)
x
(
t
)
y
(
t
)
=
H
[
x
]
=
1
π
Z
∞
−∞
x
(
τ
)
t
−
τ
d
τ
=
1
π
Z
∞
0
x
(
t
−
τ
)
−
x
(
t
+
τ
)
τ
d
τ
.
w
(
t
)
w
(
t
)
=
R
(
t
) exp[i
Φ
(
t
)]
.
w
(
t
)
˙
w
=
α
w
−
β
4
(3
R
2
w
+
w
3
)
+
ψ
(
t
)
+
A
exp(i
Ω
t
)
,
ψ
(
t
)
=
ξ
(
t
)
+
i
η
(
t
)
η
(
t
)
ξ
(
t
)
˙
R
=
α
R
−
β
2
R
3
[1
+
cos
2
(
φ
+
Ω
t
)]
+
A
cos
φ
+
ξ
1
(
t
)
,
˙
φ
=
−
Ω
−
A
R
sin
φ
−
β
4
R
2
sin[2(
φ
+
Ω
t
)]
+
1
R
ξ
2
(
t
)
,
φ
(
t
)
=
Φ
(
t
)
−
Ω
t
ξ
1
,
2
(
t
)
ξ
1
(
t
)
=
ξ
(
t
)
cos
Φ
+
η
(
t
) sin
Φ,
ξ
2
(
t
)
=
η
(
t
) cos
Φ
−
ξ
(
t
)
sin
Φ.
Ω
x
Ω
Φ
(
t
)
h
ω
i
=
lim
T
→∞
1
T
R
T
0
d
Φ
(
t
)
d
t
d
t
A
h
ω
i
A
= 0
A
≥
1
h
ω
i
D
A
=
2
0
100
200
300
400
500
600
t/T
−100
−80
−60
−40
−20
0
20
40
60
80
100
φ( )
D=0.44
D=0.80
D=1.05
t
0
φ
(t)
t/T
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
D
0.00
0.01
0.02
0.03
0.04
0.05
<ω>
1
2
3
4
<ω>
D
φ
A
= 3
•
A
=
0
A
=
1
A
=
2
A
=
3
α
=
5
β
=
1
Ω
= 0
.
01
h
ω
i
D
A
=
3
x
D
eff
=
1
2
d
d
t
h
φ
2
(
t
)
i
−
h
φ
(
t
)
i
2
.
D
eff
D
eff
D
eff
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
D
10
−6
10
−5
10
−4
10
−3
10
−2
10
−1
10
0
Deff
A=3.0
A=2.0
A=1.0
D
D
eff
α
=
5
β
= 1
Ω
0
= 0
.
01
10
3
φ
(
t
)
Φ
out
(
t
)
=
N
(
t
)
π
Φ
in
(
t
)
=
Ω
t
φ
(
t
)
=
Φ
out
(
t
)
−
Φ
in
(
t
)
.
Φ
out
π
cos(
Φ
out
)
cos(
Φ
in
)
=
1
2
[cos(
φ
)
+
cos(2
Φ
out
−
φ
)]
=
cos(
φ
)
.
φ
W
out
φ
(
t
)
=
r
K
(
D
) exp
−
A
D
cos[
φ
(
t
)]
,
A
2
×
2
mo
d(2
π
)
φ
(
t
)
=
k
(
t
)
π
,
k
(
t
)
k
→
k
+
1
k
→
k
−
1
p
k
(
t
)
k
π
t
φ
0
=
0
t
0
=
0
∂
p
k
(
t
)
∂
t
=
W
in
k
+1
p
k
+1
−
W
in
k
p
k
+
W
out
k
−
1
p
k
−
1
−
W
out
k
p
k
.
W
out
k
=
a
1
=
r
K
(
D
) exp
−
A
D
,
W
out
k
=
a
2
=
r
K
(
D
) exp
A
D
,
k
→
k
+
1
k
k
W
DPP
k
(
t,
ϕ
0
)
=
π
∞
X
n
=
−∞
δ
t
−
nπ
+
ϕ
0
Ω
.
ϕ
0
h
W
DPP
k
i
ϕ
0
=
1
2
π
2
π
Z
0
W
DPP
±
(
t,
ϕ
0
)
d
ϕ
0
=
Ω
.
γ
τ
W
DMP
k
=
2
π
2
τ
=
π
γ
.
h
˙
φ
i
h
d
d
t
φ
i
=
−h
ω
in
i
+
h
ω
out
i
=
−h
ω
in
i
+
π
2
(
a
1
+
a
2
)
−
π
2
(
a
2
−
a
1
)
h
cos(
φ
)
i
,
h
ω
in
i
=
γ
π
hh
ω
in
ii
ϕ
0
=
Ω
∆
=
π
a
1
+
a
2
2
−
h
ω
in
i
,
π
(
a
2
−
a
1
)
/
2
µ
µ
A/D
a
1
=
a
2
=
r
K
π
h
cos
φ
i
lim
t
→∞
h
cos(
φ
)
i
=
h
σ
stat
i
=
a
2
−
a
1
2
h
ω
in
i
π
+
a
1
+
a
2
.
2
×
2
h
ω
stat
out
i
=
π
2
a
1
+
a
2
−
(
a
2
−
a
1
)
2
2
h
ω
in
i
π
+
a
1
+
a
2
.
π
D
γ
=
0
.
001
A
1
,
2
,
3
<
∆U
=
0
.
25
0.00
0.04
0.08
0.0
0.1
0.2
A
0.00
0.02
0.04
0.06
0.08
D
0
0.001
0.002
0.003
<
ω
out
*
>/
π
π
D
γ
= 0
.
001
Ω
/π
= 0
.
001
A
1
=
0
A
2
=
0
.
1
A
3
=
0
.
2
α
0
=
1
∆U
=
0
.
25
γ
=
Ω
/π
‹
1
2
...
40
41
42
43
44
45
46
...
53
54
›