
December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
139
and using (48) and (49) we get,
Z
Ω
S
k
(u
(τ) − v
i,l
µ
(τ)) dx ≤ α(, µ, i, l) (51)
which implies, by writing,
2
Z
Ω
S
k
(
u
− u
λ
2
) dx ≤
Z
Ω
S
k
(u
(τ) − v
i,l
µ
(τ)) + S
k
(u
λ
(τ) − v
i,l
µ
(τ))
dx,
that
Z
Ω
S
k
(
u
− u
λ
2
) dx ≤ α(, λ). (52)
Finally, by H¨older’s inequality, we have,
Z
Ω
|u
− u
λ
| dx =
Z
{|u
−u
λ
|≤1}
|u
− u
λ
| dx +
Z
{|u
−u
λ
|>1}
|u
− u
λ
| dx
≤
Z
{|u
−u
λ
|≤1}
|u
− u
λ
|
2
dx
!
1
2
meas(Ω)
1
2
+
Z
{|u
−u
λ
|>1}
|u
− u
λ
| dx
≤ meas(Ω)
1
2
Z
{|u
−u
λ
|≤1}
2S
1
|u
− u
λ
|
2
dx
!
1
2
+
Z
{|u
−u
λ
|>1}
2S
1
(u
− u
λ
) dx
since
(
|y|
2
)
χ
{|y|>1}
≤ (
|y|
2
+
|y|− 1
2
)
χ
{|y|>1}
= S
1
(y)
χ
{|y|>1}
and (
|y|
2
2
)
χ
{|y|≤1}
= S
1
(y)
χ
{|y|≤1}
then by (52) we deduce that,
Z
Ω
|u
(τ) −
u
λ
(τ)| dx ≤ α(, λ), not depending on τ. And thus (u
) is a Cauchy sequence
in C([0, T ], L
1
(Ω)), and since u
→ u, a.e. in Q, we deduce that u
→ u,
a.e. in C([0, T ], L
1
(Ω)).
References
1. R. Adams, Sobolev spaces, AC, Press, New York, (1975)
2. L. Aharouch, E. Azroul and M. Rhoudaf Strongly nonlinear variational
parabolic problems in Weighted Sobolev spaces to appear in AJMAA.
3. Y. Akdim, E. Azroul and A. Benkirane, Existence Results for Quasilin-
ear Degenerated Equations Via Strong Convergence of Truncations, Revista
Matematica Complutense 17, , N.2, (2004) pp 359-379.
4. Y. Akdim, E. Azroul and A. Benkirane, Existence of Solution for quasi-
linear degenerated Elliptic Unilateral Problems, Ann. Math. Blaise pascal vol
10 (2003) pp 1-20.
5. Y. Akdim, E. Azroul and A. Benkirane, Existence of solution for quasi-
linear degenerated elliptic equation, Electronic J. Diff. Equ. Vol 2001 , N71,
(2001) pp 1-19.