December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
87
6. L. Boccardo, S. Segura, C. Trombetti, Bounded and unbounded solutions for
a class of quasi-linear elliptic problems with a quadratic gradient term, J.
Math. Pures Appl., (9) 80 (2001), 919–940.
7. G. Dal Maso, F. Murat, L. Orsina, A. Prignet,Definition and existence of
renormalized solutions of elliptic equations with general measure data, C. R.
Acad. Sci. Paris S´er. I Math. 325 (1997), 481-486.
8. J. Droniou, A. Porretta, A. Prignet, Parabolic capacity and soft measures for
nonlinear equations, Potential Analysis, Volume 19, Number 2, September
2003, pp. 99-161(63)
9. A. El Hachimi And A. Lamrani Alaoui, Existence of stable periodic solutions
for quasilinear parabolic problems in the presence of well-ordered lower and
upper-solutions,proceeding of EJDE, 9 (2002), pp. 1-10.
10. P. Hess. periodic-parabolic boundary value problem and positivity, Pitman
Res. Notes Mathematics, Vol. 247, Longman Sci. Tech., Harlow, 1991.
11. R. Landes, On the existence of weak solutions for quasilinear parabolic bound-
ary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 217-237.
12. P. Polacik, Parabolic equations: asymptotic behaviour and dynamics on in-
variant manifolds, In: Handbook of Dyn. Syst., Vol. 2, North-Holland, Ams-
terdam, pp. 835–883.
13. A. Porretta, Existence results for nonlinear parabolic equations via strong
convergence of truncations , Ann. Mat. Pura ed Applicata (IV) 177 (1999),
pp. 143–172.
14. A. Porretta; Nonlinear equations with natural growth terms and measures
data, proceeding of EJDE, 9 (2002), pp. 183-202.
15. J. M. Rakotoson, A compactness lemma for quasilinear problems: Application
to parabolic equations, J. Funct. Anal., Vol. 106, No. 2, pp. 1163-1175, 1992.
16. S. Segura de Leon, Existence and uniqueness for L
1
data of some elliptic
equations with natural growth, Advances in Diff. Eq., to appear.
17. J. Simon, compact sets in L
p
(0, T ; B), Ann. Math. Pura Appl. , 146 (4)
(1987), 65-96.